ответ: 200 и 40 кустов.
Пошаговое объяснение:
Записать сколько было изначально кустов на каждом участке.
Какие действия произведены с количеством кустов.
Указать сравнение количества кустов на участках.
Решение
Пусть на втором участке было х кустов (потому что там меньше, чем на первом). На втором участке тогда 5х кустов (ведь в 5 раз больше).
С первого участка отнимаем 50 кустов
5х - 50.
На втором участке добавили 50 с первого и дополнительно посадили 60 кустов: х + 50 + 60.
После действий количество на первом стало равно количеству кустов на втором.
Конечные результаты нужно приравнять друг к другу
Составим уравнение
1. 5х - 50 = х + 50 + 60
5х - 50 = х + 110
перенесем х влево, а 50 в право, изменив знак перед 50.
5х - х = 110 + 50
4х = 160
х находим как неизвестный множитель произведение 160 разделить на множитель 4:
х = 160 : 4
х = 40 (к) было первоначально на втором участке.
2. Так как на первом участке было в 5 раз больше кустов, поэтому результат 40 умножаем на 5.
5 * 40 = 200 (к) кустов было первоначально на первом участке.
Проверка:
5 * 40 - 50 = 40 + 50 + 60
150 = 150.
/ - это дробь
х в кв. - это х в квадрате
пусть х - время, за которое первый рабочий выполнит работу = 1, значит время, за которое выполнит эту же работу второй рабочий - у = х+6.
Производительность первого рабочего = 1/х, второго = 1/у.
Составим систему уравнений:
у = х+6
(1/х+1/у)*8 + 4*1/х = 1
у = х+6
8/х+8/у+4/х = 1
12/х+8/(х+6) = 1
12(х+6) 8х
+ = 1
х в кв.+6х х в кв.+6х
12х+72+8х
= 1
х в кв.+6х
20х+72 = х в кв.+6х
-х в кв.+20х-6х+72 = 1 *(-1)
х в кв.-14х-72 =0
D = -b в кв. - 4*ac
D = -14*(-14)-4*1*(-72) = 196+288 = 484 = 22*22
-b+,- корень из D
х =
2*a
х1 = (14+22)/2 = 18
х2 = (14-22)/2 = -8/2 = -4 - не является решением (минусовое)
х = 18 (дней)- понадобится первому рабочему для выполнения работы самостоятельно.
Проверим:
18+6 = 24 (дня)- потребуется второму.
1:18 = 1/18 (раб./час)- производительность первого.
1:24 = 1/24 (раб./час)- произв. второго.
1/24+1/18 = 3/72+4/72 = 7/72 (раб./час)- совместная произв.
7/72*8+1/18*4 =7/9+2/9 = 9/9 = 1
ответ: за 18 дней смог бы выполнить эту работу первый рабочий.