Пошаговое объяснение:
Найдем абсолютную величину тригонометрического выражения
2 cos ( 1 4 x)
, рассматривая абсолютное значение коэффициента.
2
Нижняя граница области значений косинуса находится подстановкой отрицательного значения коэффициента амплитуды в уравнение. y = − 2
Верхняя граница области значений косинуса определяется подстановкой положительного значения коэффициента в уравнение. y = 2
Областью значений является − 2 ≤ y ≤ 2
Запись в виде интервала: [ -2 , 2 ]
Нотация построения множества: { y | − 2 ≤ y ≤ 2
}
Пошаговое о1) 2(3x + 1) - x ≤ 3(x + 4), 2) 7x + 4(x - 2) > 6(1 + 3x),
6х + 2 - х ≤ 3х + 12, 7х + 4х - 8 > 6 + 18x,
5х + 2 ≤ 3х + 12, 11x - 8 > 6 + 18x,
5х - 3х ≤ 12 - 2, 11x - 18x > 6 + 8,
2х ≤ 10, -7x > 14,
х ≤ 5, x < - 2,
х ∈ (-∞; 5]; x ∈ (-∞; -2);
3) 2(x - 1) - 3(x + 2) < 6(1 + x), 4) 7(y + 3) - 2(y + 2) ≥ 2(5y + 1),
2x - 2 - 3x - 6 < 6 + 6x, 7y + 21 - 2y - 4 ≥ 10y + 2,
-x - 8 < 6 + 6x, 5y + 17 ≥ 10y + 2,
-x - 6x < 6 + 8, 5y - 10y ≥ 2 - 17,
-7x < 14, -5y ≥ -15,
x > -2, y ≤ 3,
x ∈ (-2; +∞); y ∈ (-∞; 3]. бъяснение:
2)сколько сока осталось 260-210= 50 б.
ответ 50 банок осталость