Положим так. Если А1 танцевал с Б1, а А2 танцевал с Б2, то А1 танцевал с Б2, а А2 танцевал с Б1. Есть какое-то множество девочек М1, с которыми танцевал мальчик А1; и множество девочек М2, с которыми танцевал мальчик Б2. Оба множества непусты ввиду первых двух предложений.
Гипотеза указывает, что мальчик А1 танцевал с любой девочкой из М2. Множество М1 можно пополнять до тех пор, пока остаются другие нерассмотренные мальчики помимо А1; и если множество М1 ещё не включает всех девочек, то, ввиду предложения о наличии затанцованного мальчика для каждой девочки, такие мальчики остаются. Значит, А1 танцевал со всеми девочками, противоречие.
ответ: 3 и 9
Пошаговое объяснение: Так как разность двух чисел равна 6, то уменьшаемое (1 число) больше вычитаемого (2 число) на 6. Значит 1 число можно представить как сумму 2 числа и 6.
Тогда, если сложить эти два числа, то мы получим сумму удвоенного 2 числа и 6, что равно 12. Откуда 2 число в два раза меньше разности 12 и 6, то есть оно равно 3. Чтобы при сложении двух чисел (1 числа и 3) получилось 12, второе слагаемое (1 число) должно быть равно 9.
Алгебраическая запись:
Пусть a -- второе число, тогда a+6 -- первое число. Составим уравнение, используя условие суммы:
a + (a + 6) = 12
2a + 6 = 12
2a = 6
a = 3 -- второе число
a + 6 = 3 + 6 = 9 -- первое число
.................................................