Определим значение производной функции в точке x=0: Определим значение функции в точке x=0: Координаты точки: x=0; y=-2 , что подтверждает построенный график функции. Подберем значения функции вблизи точки для получения интервалов возрастания и убывания функции. | | - | + -------------------•-------------------> 0 | x | Следовательно, M(0;-2) - точка минимума функции. ответ: Функция монотонно убывает на интервале знакопостоянства производной: x∈(-∞;0)
Уравнение y=|x-2|+5 представляет собой ломаную линию с перегибом в точке (2; 5), расходящуюся влево и вправо под углом 45 градусов к оси х. Парабола х² - 4х + 3 имеет вершину в точке хо = -в / 2а = 4/1*2 = 2. Поэтому она симметрична относительно линии х = 2, проходящую через точку перегиба ломаной. Правая часть её имеет уравнение у = х - 2 + 5 = х + 3, а левая у = 2 - х + 5 = 7 - х.
Поэтому можно высчитать площадь одной половины фигуры (примем правую) и умножить на 2.
x_вер=-в/2а
х_вер=-(-6)/2=3
у_вер=3²-6*3+8=-1
коорд. вершины: (3;-1)
2. y=-2x²+x+10
х_вер=1/(2*(-2))=-1/4=-0,25
у_вер=-2*(-0,25)²+(-0,25)+10=9,625
(-0,25; 9,625)