Слово процент латинского происхождения и означает одну сотую часть чего-либо ( сравните цент - одна сотая доллара, центурион - начальник сотни)
1% - это одна сотая доля чего-либо.
1%=1:100=0,01
Поэтому для того, чтобы узнать содержание одного процента от целого, нужно всего лишь это целое (например, число) разделить на 100. Например,
1 процент от числа 70 это 70:100=0,7 .
1% от 700=700:100=7
или 700*0,01=7
Если процент больше одного, находят одну сотую числа и уможают на нужное количество процентов.
Пример:
3% от 300:
300:100*3=9 или 300*0,03=9
Так же находят процент от числа, выраженный не целым числом:
Число 180.
Найти 25,5% этого числа:
(180:100)*25,5= 45,9.
То есть,
чтобы найти процент от числа, нужно это число умножить на дробь, в числителе которой количество процентов, в знаменателе - 100.
Иначе:
перевести проценты в десятичную дробь (для этого следует разделить количество процентов на 100); и умножить число на эту дробь.
Так как
25,5%=0,255 ⇒
180*0,255=45,9
Целое число по проценту находят иначе.
Предположим, нужно найти число, если его 4% равны 20
Нужно найти сначала, чему равен 1%, и затем умножить содержание 1% на 100
20:4*100=500
То-есть узнать, чему равна одна сотая часть данной величины, например, числа, а затем умножить результат на 100 и получить целое, которое в 100 раз больше одной своей сотой доли.
Т.к. 4%=0,04, эта запись может выглядеть так:
20:0,04=500
Итак, чтобы найти полное число по его процентам, надо:
перевести проценты в десятичную дробь и данное число разделить на эту дробь.
5. 1) y = e^(5x)*(x^2 + 1)^3
y' = 5e^(5x)*(x^2 + 1)^3 + e^(5x)*3(x^2 + 1)^2*3x^2
2) y = 6x^2 - 2x^(-4) + 5
y' = 12x - 2(-4)*x^(-5) = 12x + 8/x^5
6. найдём точку пересечения прямых.
{ 3x + 2y - 13 = 0
{ x + 3y - 9 = 0
умножаем 2 уравнение на - 3
{ 3x + 2y = 13
{ - 3x - 9y = 27
складываем уравнения
-7y = 40; y = - 40/7
подставляем во 2 уравнение
x = 9 - 3y = 63/7 + 120/7 = 183/7
это точка (183/7; - 40/7)
если прямая параллельна x/4 + y/5 = 1, то она имеет такие же коэффициенты.
(x - 183/7)/4 + (y + 40/7)/5 = 0
умножаем все на 20
(5x - 915/7) + (4y + 160/7) = 0
5x + 4y - 755/7 = 0
35x + 28y - 755 = 0