М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
шегп
шегп
19.10.2020 13:54 •  Математика

1) знайдіть площу квадрата, периметр якого дорівнює 156 м. 2) одна сторона прямокутника дорівнює 18 см, а друга- на 6 см. більша за неї. обчисліть периметр та площу прямокутника.

👇
Ответ:
мурgsng
мурgsng
19.10.2020

1) 156/4=39(м)-сторана квадрата.

2)39*39= 1521(м2)-S квадрата.

Ето 1 задача 

4,7(63 оценок)
Ответ:
Жыгаа
Жыгаа
19.10.2020

находим сторону квадрата

1)156/4=39м

s=39х39=1521м^2

 2)находим сторону прямоугольника

18+6=24см

находим периметр

18+24+18+24=84см

находим площадь прямоугольника

s=18х24=432см^2 

4,7(74 оценок)
Открыть все ответы
Ответ:
coolmaVIP
coolmaVIP
19.10.2020
1)
x- \sqrt{25-x^2}=1 \\ 
- \sqrt{25-x^2}=1-x \\ 
 \sqrt{25-x^2}=x-1

ОДЗ: 
a) 25-x²≥0
    x²-25≤0
    (x-5)(x+5)≤0
    x=5      x= -5
      +               -                   +
--------- -5 ------------ 5 --------------
                \\\\\\\\\\\\\\\
    x∈[-5; 5]
b) x-1≥0
    x≥1
В итоге ОДЗ: x∈[1; 5]

25-x²=(x-1)²
25-x²=x²-2x+1
-x²-x²+2x+25-1=0
-2x²+2x+24=0
x²-x-12=0
D=(-1)² -4*(-12)=1+48=49=7²
x₁=(1-7)/2= -3 - не подходит по ОДЗ.
x₂=(1+7)/2=4
ответ: 4.

2)
\sqrt{x-1}- \sqrt{2x-9}= -1

ОДЗ:
а) x-1≥0
    x≥1
b) 2x-9≥0
    2x≥9
    x≥4.5
В итоге ОДЗ: x∈[4.5; +∞)

( \sqrt{x-1}- \sqrt{2x-9} )^2=(-1)^2 \\ 
x-1-2 \sqrt{(x-1)(2x-9)}+2x-9=1 \\ 
-2 \sqrt{2x^2-2x-9x+9}=-3x+11 \\ 
2 \sqrt{2x^2-11x+9}=3x-11 \\ 
(2 \sqrt{2x^2-11x+9} )^2=(3x-11)^2 \\ 
4(2x^2-11x+9)=9x^2-66x+121 \\ 
8x^2-44x+36=9x^2-66x+121 \\ 
8x^2-9x^2-44x+ 66x+36-121=0 \\ 
-x^2+22x-85=0 \\ 
x^2-22x+85=0 \\ 
D=(-22)^2-4*85= 484-340=144=12^2 \\ 
x_{1}= \frac{22-12}{2}=5 \\ 
x_{2}= \frac{22+12}{2}=17

Проверка корней:
а) x=5
\sqrt{5-1}- \sqrt{2*5-9}= \sqrt{4}- \sqrt{1}=2-1=1 \\ 
1 \neq -1
х=5 - не корень уравнения
 
b) x=17
\sqrt{17-1}- \sqrt{2*17-9}= \sqrt{16}- \sqrt{25}=4-5=-1 \\ 
-1=-1
x=17 - корень уравнения.
ответ: 17.

3)
x+ \sqrt{x+1}=11 \\ 
 \sqrt{x+1}=11-x

ОДЗ:
a) x+1≥0
    x≥ -1
b) 11-x≥0
     -x≥ -11
      x≤11
В итоге ОДЗ: х∈[-1; 11]

x+1=(11-x)²
x+1=121-22x+x²
-x²+x+22x+1-121=0
-x²+23x-120=0
x²-23x+120=0
D=(-23)² -4*120=529-480=49=7²
x₁=(23-7)/2=8
x₂=(23+7)/=15 - не подходит по ОДЗ.
ответ: 8.

4)
2- \sqrt{5x}+ \sqrt{2x-1}=0

ОДЗ: 
a) 5x≥0
x≥0

b) 2x-1≥0
    2x≥1
    x≥0.5
В итоге ОДЗ: х∈[0.5; +∞)

\sqrt{2x-1}- \sqrt{5x}=-2 \\ 
( \sqrt{2x-1}- \sqrt{5x} )^2=(-2)^2 \\ 
2x-1-2 \sqrt{5x(2x-1)}+5x=4 \\ 
7x-1-2 \sqrt{5x(2x-1)}=4 \\ 
-2 \sqrt{5x(2x-1)}=-7x+4+1 \\ 
-2 \sqrt{10x^2-5x}=-7x+5 \\ 
(2 \sqrt{10x^2-5x})^2=(7x-5)^2 \\ 
4(10x^2-5x)=49x^2-70x+25 \\ 
40x^2-20x-49x^2+70x-25=0 \\ 
-9x^2+50x-25=0 \\ 
9x^2-50x+25=0 \\ 
D=(-50)^2-4*9*25=2500-900=1600=40^2 \\ 
x_{1}= \frac{50-40}{9*2}= \frac{10}{18}= \frac{5}{9} \\ 
x_{2}= \frac{50+40}{18}=5

Проверка корней:
х=⁵/₉
2- \sqrt{5* \frac{5}{9} }+ \sqrt{2* \frac{5}{9}-1 }=2- \frac{5}{3}+ \frac{1}{3}= \frac{6-5+1}{3}= \frac{2}{3} \\ \\ 
 \frac{2}{3} \neq 0
x=⁵/₉ - не корень уравнения

х=5
2- \sqrt{5*5}+ \sqrt{2*5-1}=2-5+3=0 \\ 
0=0
ответ: 5.

5)
\sqrt{2+ \sqrt{x-5} }= \sqrt{13-x} \\ 
(2+ \sqrt{x-5} )^2=( \sqrt{13-x} )^2 \\ 
2+ \sqrt{x-5}=13-x \\ 
 \sqrt{x-5}=13-2-x \\ 
x-5=(11-x)^2 \\ 
x-5=121-22x+x^2 \\ 
-x^2+x+22x-5-121=0 \\ 
-x^2+23x-126=0
 \\ 
x^2-23x+126=0 \\ 
D=(-23)^2-4*126= 529-504=25=5^2 \\ 
x_{1}= \frac{23-5}{2}=9 \\ 
x_{2}= \frac{23+5}{2}=14

Проверка корней:
х=9
\sqrt{2+ \sqrt{9-5} }= \sqrt{13-9} \\ 
 \sqrt{2+2}= \sqrt{4} \\ 
2=2
x=9 - корень уравнения

х=14
\sqrt{2+ \sqrt{14-5} }= \sqrt{13-14} \\ 
 \sqrt{13-14}= \sqrt{-1}
не имеет смысла.
х=14 - не корень уравнения.
ответ: 9.

6)
\sqrt{x-3}* \sqrt{2x+2}=x+1 \\ 
 \sqrt{(x-3)(2x+2)}=x+1 \\ 
 \sqrt{2x^2-6x+2x-6}=x+1 \\ 
 \sqrt{2x^2-4x-6}=x+1 \\ 
2x^2-4x-6=(x+1)^2 \\ 
2x^2-4x-6=x^2+2x+1 \\ 
2x^2-x^2-4x-2x-6-1=0 \\ 
x^2-6x-7=0 \\ 
D=(-6)^2-4*(-7)=36+28=64=8^2 \\ 
x_{1}= \frac{6-8}{2}=-1 \\ 
x_{2}= \frac{6+8}{2}=7

Проверка корней:
x= -1
\sqrt{-1-3}= \sqrt{-4}

не имеет смысла
х= -1 - не корень уравнения

х=7
\sqrt{7-3}* \sqrt{2*7+2}=7+1 \\ 
 \sqrt{4}* \sqrt{16}=8 \\ 
2*4=8 \\ 
8=8

ответ: 7.
4,5(23 оценок)
Ответ:
Обозначим среднее число, как С (Centre), левое от него L (Left), правое от центра R (Right), вверх от центра U (Up) и вниз от центра D (Down). Оставшиеся по углам числа обозначим, как x, y, z и t.

    x    U    y
    
    L    C    R

    z    D    t

Сумма в верхнем левом квадрате 2х2:    x + U + L + C ;

Сумма в верхнем правом квадрате 2х2:    U + y + C + R ;

Сумма в нижнем левом квадрате 2х2:    L + C + z + D ;

Сумма в нижнем правом квадрате 2х2:    C + R + D + t ;

Сумма этих четырёх сумм будет:

 S = ( x + U + L + C ) + ( U + y + C + R ) + ( L + C + z + D ) + ( C + R + D + t ) =

 = x + 2U + 2L + 4C + y + 2R + z + 2D + t =

 = x + y + z + t + 2 ( U + L + R + D ) + 4C ;

Нам нужно добиться минимальности S, тогда в натуральные числа нужно брать минимальные натуральные числа, а значит и число 1. Величина числа C влияет на общую сумму сильней всего, поскольку число С берётся 4 раза, с коэффициентом 4, т.е. как 4С, поэтому в первую очередь минимизировать нужно именно число С. Итак, С = 1 , а 4С=4 .

Оставшиеся величины U, L, R и D влияют на общую сумму с удвоенной силой, поскольку величина ( U + L + R + D ) берётся 2 раза, с коэффициентом 2, т.е. как 2( U + L + R + D ), поэтому в эти величины нужно взять 4 минимальные натуральные числа отличные от единицы, т.е. числа 2, 3, 4 и 5, всё равно в каком именно порядке, т.е. просто:

( U + L + R + D ) = ( 2 + 3 + 4 + 5 ) = 14 ;

 2 ( U + L + R + D ) = 28 ;

Мы знаем, что полная сумма должна быть равна 50, т.е.:

 x + U + y + L + C + R + z + D + t = 50 .

 ( x + y + z + t ) + ( U + L + R + D ) + C = 50 .

Подставим сюда величины,
которым мы уже присвоили определённые значения:

 ( x + y + z + t ) + 14 + 1 = 50 .

 x + y + z + t = 35 .

Мы никак не ограниченны в выборе разных чисел  x, y, z и t , так что вполне можем подобрать какие-то натуральные числа, чтобы это выполнялось, например  ( x + y + z + t ) = ( 7 + 8 + 9 + 11 ) .

Все условия выполнены, числа взяты минимальные, в сумме квадратика 3х3 они дают 50, теперь посчитаем сумму всех сумм 2х2:

 S = x + y + z + t + 2 ( U + L + R + D ) + 4C = 35 + 28 + 4 = 35 + 32 = 67 ;

О т в е т : 67 .
4,6(59 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ