М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
саша23310
саша23310
09.06.2021 12:13 •  Математика

Примеры нужно расписать 408 х 270+21.008: 808 71.370: 234+695х50 280084: 28-125х8 (327+541350: 450): 3 (31.460+1.040): (150-2.400: : 120) (78.213-75.209)х 207-45 х 308 (992.341: 269+780)-325: 5 434.280: 517х306+27.449 нужно ! расписать по !

👇
Ответ:
lelyaklochkova
lelyaklochkova
09.06.2021
1)408*270+21.008:808=110160.02
1)408*270=110160;
2)21.008:808=0.026;
3)110160+0.026=110160.02;
2)71.370:234+695*50=
1)695*50=34750;
2)71.370:234=0.305
3)34750+0.305=34750.305;
3) 280084:28-125*8=11003
1)125*8=1000;
2)280084:28=10003;
3)1000+10003=11003;
4,8(65 оценок)
Открыть все ответы
Ответ:
valeria02042004
valeria02042004
09.06.2021

ответ:

1) область определения функции. точки разрыва функции.  

2) четность или нечетность функции.  

y(-x)=x3+6·x2  

функция общего вида  

3) периодичность функции.  

4) точки пересечения кривой с осями координат.  

пересечение с осью 0y  

x=0, y=0  

пересечение с осью 0x  

y=0  

-x3+6·x2=0  

x1=0, x2=6  

5) исследование на экстремум.  

y = -x^3+6*x^2  

1. находим интервалы возрастания и убывания. первая производная.  

f'(x) = -3·x2+12·x  

или  

f'(x)=3·x·(-x+4)  

находим нули функции. для этого приравниваем производную к нулю  

x·(-x+4) = 0  

откуда:  

x1 = 0  

x2 = 4  

(-∞ ; 0) (0; 4) (4; +∞)

f'(x) < 0 f'(x) > 0 f'(x) < 0

функция убывает функция возрастает функция убывает

в окрестности точки x = 0 производная функции меняет знак с (-) на (+). следовательно, точка x = 0 - точка минимума. в окрестности точки x = 4 производная функции меняет знак с (+) на (-). следовательно, точка x = 4 - точка максимума.  

2. найдем интервалы выпуклости и вогнутости функции. вторая производная.  

f''(x) = -6·x+12  

находим корни уравнения. для этого полученную функцию приравняем к нулю.  

-6·x+12 = 0  

откуда точки перегиба:  

x1 = 2  

(-∞ ; 2) (2; +∞)

f''(x) > 0 f''(x) < 0

функция вогнута функция выпукла

6) асимптоты кривой.  

y = -x3+6·x2  

уравнения наклонных асимптот обычно ищут в виде y = kx + b. по определению асимптоты:  

находим коэффициент k:  

поскольку коэффициент k равен бесконечности, наклонных асимптот не существует.  

4,8(73 оценок)
Ответ:
1dianalady1
1dianalady1
09.06.2021

ответ:

пересечения кривой с осями координат.  

пересечение с осью 0y  

x=0, y=0  

пересечение с осью 0x  

y=0  

-x3+6·x2=0  

x1=0, x2=6  

5) исследование на экстремум.  

y = -x^3+6*x^2  

1. находим интервалы возрастания и убывания. первая производная.  

f'(x) = -3·x2+12·x  

или  

f'(x)=3·x·(-x+4)  

находим нули функции. для этого приравниваем производную к нулю  

x·(-x+4) = 0  

откуда:  

x1 = 0  

x2 = 4  

(-∞ ; 0) (0; 4) (4; +∞)

f'(x) < 0 f'(x) > 0 f'(x) < 0

функция убывает функция возрастает функция убывает

в окрестности точки x = 0 производная функции меняет знак с (-) на (+). следовательно, точка x = 0 - точка минимума. в окрестности точки x = 4 производная функции меняет знак с (+) на (-). следовательно, точка x = 4 - точка максимума.  

2. найдем интервалы выпуклости и вогнутости функции. вторая производная.  

f''(x) = -6·x+12  

находим корни уравнения. для этого полученную функцию приравняем к нулю.  

-6·x+12 = 0  

откуда точки перегиба:  

x1 = 2  

(-∞ ; 2) (2; +∞)

f''(x) > 0 f''(x) < 0

функция вогнута функция выпукла

6) асимптоты кривой.  

y = -x3+6·x2  

уравнения наклонных асимптот обычно ищут в виде y = kx + b. по определению асимптоты:  

находим коэффициент k:  

поскольку коэффициент k равен бесконечности, наклонных асимптот не существует.  

4,4(31 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ