1. Взвешиваем по 4 шара на каждой стороне весов. Есть два варианта. Либо будет равновесие, либо его не будет.
В первом случае аномальный шарик в числе невзвешенных шариков. Иначе - в числе взвешенных.
Так, для удобства пронумеруем все шарики от 1 до 12. Предположим, что на одной чаше весов были 1, 2, 3, 4. На другой 5, 6, 7, 8.
Итак, вариант а) - равновесие.
Тогда:
аномальный шарик один из номеров: 9, 10, 11, 12. Причём нам неизвестно - легче он или тяжелее.
Проводим второе взвешивание. Взвешиваем по три шарика. На одной стороне весов кладём те, которые отчно настоящие. Например для определённости: 1, 2, 3. На другой стороне весов кладём три омнительных шарика. Например 9, 10, 11.
Если будет равновесие, значит оставшийся шарик - аномален. Третим взвешиванием срвниваем его с любым ормальным шариком и таким образом определяем - легче он или тяжелее.
Если перевешивают нормальные шарики, значит аномальный один из трёх: 9, 10, 11. Причём он легче. Ложим на весы по одному аномальному шарику. Тот из них, который легче - аномальный. Если они равны по весц - то аномальный третий шарик. Причём он легче.
Если перевешивают побозрительные шарики, от аномальный - один из них. Причём он тяжелее. Аналогично взвешиваем два подозрительных шарика. Тот из них, который тяжелее - аномальных. Если два взвешенных равны, то аномален тритий, и он тяжеле
В году в среднем 365 дней. В среднем 52-53 понедельника. Пусть все числа в году будут под номерами от 1 до 365. Тогда 13 число месяца ( начиная с января) встречается в следующие по счету дни: 13 , 13+31= 44 , 44+28= 72 , 72+31=103, 103+30=133, 133+31= 164, 164+30= 194, 194+31= 225, 225+30 = 255, 255+31= 286, 286+30 = 316, 316+31 = 347 Теперь сколько раз повторяются дни недели (разделим на 7, посмотрим остатки) 13:7= 1 ост.6 72 :7 = 10 ост.2 103: 7 = 14 ост. 5 133: 7= 19 ост.0 164:7 = 23 ост. 3 194:7= 27 ост.5 225 : 7=32 ост.1 255 :7 =36 ост.3 286 :7=40 ост. 6 316 : 7= 45 ост.1 347:7=49 ост.4 Если мыслить логически , то все остатки от 0 до 6 ( пн.-воскр.) присутствуют , т.е. на 13 число может выпасть любой день недели. Остаток 0 - выпадает один раз , значит наименьшее количество понедельников с 13 числом - 1 день в году. Остаток 3 - выпадает больше раз, чем все остальные числа - 3 раза , значит наибольшее количество понедельников с 13 числом - 3 раза в год . ответ: 3 раза в год - наибольшее количество понедельников с 13 числом. Может и можно решить как-то проще, но .. я не знаю как.
Необходимо посчитать сколько отрицательных чисел в примере. Если их количество четное, то значение выражения положительное число. Если их количество нечетное, то значение выражения отрицательное число. Так положительными будут выражения 2, 3, 4, а отрицательными будут выражения 1, 5, 6, 7, 8 В 6, 7 и 8 выражениях наблюдается закономерность: чередование положительного числа с отрицательным так, если продолжить выражение до его окончания, указанного в примере, и посчитать количество отрицательных чисел, мы получим, что результат отрицательный
В первом случае аномальный шарик в числе невзвешенных шариков. Иначе - в числе взвешенных.
Так, для удобства пронумеруем все шарики от 1 до 12. Предположим, что на одной чаше весов были 1, 2, 3, 4. На другой 5, 6, 7, 8.
Итак, вариант а) - равновесие.
Тогда:
аномальный шарик один из номеров: 9, 10, 11, 12. Причём нам неизвестно - легче он или тяжелее.
Проводим второе взвешивание. Взвешиваем по три шарика. На одной стороне весов кладём те, которые отчно настоящие. Например для определённости: 1, 2, 3. На другой стороне весов кладём три омнительных шарика. Например 9, 10, 11.
Если будет равновесие, значит оставшийся шарик - аномален. Третим взвешиванием срвниваем его с любым ормальным шариком и таким образом определяем - легче он или тяжелее.
Если перевешивают нормальные шарики, значит аномальный один из трёх: 9, 10, 11. Причём он легче. Ложим на весы по одному аномальному шарику. Тот из них, который легче - аномальный. Если они равны по весц - то аномальный третий шарик. Причём он легче.
Если перевешивают побозрительные шарики, от аномальный - один из них. Причём он тяжелее. Аналогично взвешиваем два подозрительных шарика. Тот из них, который тяжелее - аномальных. Если два взвешенных равны, то аномален тритий, и он тяжеле