Пошаговое объяснение:
1) (6y-1)(y+2)<(3y+4)(2y+1)
6y^2 +12y-y-2<6y^ +3y+8y+4
6y^2 -6y^2 +11y-11y<4+2
0<6
y принадлежит (-∞; +∞).
2) 4(х+2)<(х+3)^2 -2х
4x+8<x^2 +6x+9-2x
x^2 +4x+9-4x-8>0
x^2 +1>0
x^2>-1 - данное неравенство верно при любом значении x.
Следовательно, x принадлежит (-∞; +∞).
1) (3y-1)(2y+1)>(2y-1)(2+3y)
6y^2 +3y-2y-1>4y+6y^2 -2-3y
6y^2 -6y^2 +y-y>1-2
0>-1
x принадлежит (-∞; +∞).
2) (x-5)^2 +3x>7(1-x)
x^2 -10x+25+3x-7+7x>0
x^2 +18>0
x^2>-18 - данное неравенство верно при любом значении x.
Следовательно, x принадлежит (-∞; +∞).
Во-первых, надо првести дроби к общему знаменателю для сравнения дробей:
Общий знаменатель в данном случае 24:
-5/6=-4*5/4*6=-20/24
-11/24
-11/12=2*-11/2*12=-22/24
-7/12=2*-7/2*12=-14/24
Из данных чисел самое меньшее из из чисел будет наибольшим, так как числа отрицательные:
В данном случае дробь --11/24 является наибольшим числом
ответ: -11/24