A=kN+a
B=sN+b
kN+sN делится на N нацело
Тогда остаток от деления на сумму равен:
a+b если a+b <N
a+b-N если a+b >= N (остаток всегда меньше делителя)
kN-sN делится на N нацело
Тогда остаток от деления на разность равен:
a-b если a-b > 0
N-(a-b) если a-b <=0
(kN+a)(sN+b)
kNb+sNa+ksN^2 делится нацело
Остаток равен ab если ab<N
Остаток равен остатку от деления ab на N(невозможно записать проще)
A/B=(kN+a)/(sN+b)
Воспользуемся сравнениями по модулям
A==a(mod N)
B==b(modN)
A/B==a/b(mod N)
Тогда остаток будет = a/b, но мы сможем его найти только если остатки a и b делятся друг на друга нацело и A/B тоже делятся друг на друга нацело.
ответ:
левая часть:
1) определена на [0, 2a], a > = 0
2) становится четной функцией y после замены y = x - a, значит, если ваше уравнение имеет ровно один корень, то он равен a.
3) строго вогнута (пузиком вверх) как сумма функций, тем же свойством, следовательно, с учетом 2), строго возрастает [0, a] и строго убывает на [a, 2a]
отсюда ваше уравнение имеет единственный корень тогда и только тогда, когда a - корень уравнения. подставляем x = a в уравнение, получаем 2sqrt(a) = a, откуда a = 0 или a = 4. оба значения нам
пошаговое объяснение:
ps. и вот вам поиграть -
Одна третья от 72 = 24 розы
Роз в ответе = 72-(36+24)=12