ответ: x∈[-2;4].
Пошаговое объяснение:
1) Составляем выражение для отношения a(n+1)/a(n), где a(n+1) и a(n) - соответственно n+1 - й и n - ный члены ряда: a(n+1)/a(n)=(x-1)*(3*n-1)²/[3*(3*n+2)²].
2) Составляем выражение для модуля этого отношения. Так как (3*n-1)²>0 и 3*(3*n+2)²>0, то /a(n+1)/a(n)/=/x-1/*(3*n-1)²/[3*(3*n+2)²].
3) Находим предел этого выражения при n⇒∞: lim /a(n+1)/a(n)/=1/3*/x-1/, так как lim (3*n-1)²/[3*(3*n+2)²]=1/3.
4) Составляем и решаем неравенство 1/3*/x-1/<1. Оно имеет решение -2<x<4, то есть x∈(-2;4). Поэтому -2<x<4 - интервал сходимости ряда.
5) Остаётся исследовать поведение ряда на концах этого интервала.
а) если x=-2, то ряд принимает вид (-1)^n/[(3*n-1)²]. Так как /(-1)^n/[(3*n-1)²]/=1/[(3*n-1)²]<1/n², а ряд обратных квадратов сходится, то в точке x=-2 данный ряд тоже сходится, причём - абсолютно.
б) если x=4, то ряд принимает вид 1/[(3*n-1)²]. Как только что было показано, данный ряд сходится - значит, данный ряд сходится и в этой точке. Поэтому областью сходимости ряда является интервал x∈[-2;4].
sqrt(12-2*sqrt(11)) + 10 / (1 - sqrt(11)) = sqrt(sqrt(11) - 1)^2) + 10/ (1 - sqrt(11)) = | sqrt(11) - 1| + 10/ (1-sqrt(11)) = > | так как sqrt(11) > 1, то |sqrt(11) - 1 | = sqrt(11) - 1 | => sqrt(11) - 1 + 10/(1-sqrt(11)) = sqrt(11) + 9 / 1 - sqrt(11)) = (sqrt(11) + 9)(1 + sqrt(11)) /( (1 - sqrt(11))(1 + sqrt(11))) =
(20 + 10sqrt(11))/(-10) = -2 - sqrt(11)
P. S.: sqrt(11) - корень квадратный из 11
P. S. S.: update
Пошаговое объяснение: