
Общее решение неоднородного дифференциального уравнения равно сумме общего решения однородного дифференциального уравнения, соответствующего данному неоднородному, и частного решения неоднородного дифференциального уравнения.

Составим однородное дифференциальное уравнение, соответствующее данному неоднородному:

Составим характеристическое уравнение и решим его:



Общее решение однородного уравнения:

Запишем в общем виде частное решение данного неоднородного уравнения, учитывая, что в правой части стоит произведение экспоненты и на косинус, а также то, что степень экспоненты и выражение под знаком косинуса совпадают с соответствующими выражениями, полученными при решении однородного уравнения:

Находим первую производную:







Находим вторую производную:










Подставляем в исходное уравнение:










Условие равенства левой и правой частей:

Частное решение данного неоднородного уравнения:

Общее решение данного неоднородного уравнения:

(х-4)*2=у+4
х+у=15
это система
упростим первое уравнение
= 2х-8=у+4
2х-у=12
получилась система
2х-у=12
х+у=15
складываем 3х=27
х=9, тогда у=6