Пошаговое объяснение:
1) Новая сторона a квадрата:
(a·(100+30)%)/100%=1,3a
Первоначальная площадь квадрата:
S=a²
Новая площадь квадрата:
S(нов)=(1,3a)²=1,69a²
(100%·1,69a²)/a²=169% составляет новая площадь квадрата, когда 100% составляет первоначальная площадь квадрата.
169%-100%=69% - на столько процентов увеличилась площадь квадрата.
2) Новая сторона a квадрата:
(a·(100-10)%)/100%=0,9a
Первоначальная площадь квадрата:
S=a²
Новая площадь квадрата:
S(нов)=(0,9a)²=0,81a²
(100%·0,81a²)/a²=81% составляет новая площадь квадрата, когда 100% составляет первоначальная площадь квадрата.
100%-81%=19% - на столько процентов уменьшилась площадь квадрата.
Обозначим центр окружности сечения O' и ее радиус r.
Расстояние от O до O' равно ρ.
Длина окружности сечения L равна 2πr.
Возьмем плоскость β так, чтобы она была перпендикулярна α и содержала центр сферы.
Плоскости α и β пересекаются по прямой a, которая пересекает сферу в точках A и B. OA = OB = R.
При этом, точки A и B являются диаметрально-противоположными точками окружности сечения O'. Значит, O'A = O'B = r. При этом точка O' лежит в плоскости β.
Рассмотрим треугольник OO'A.
OO' ⊥ AB, OA = R, O'A = r, OO' = ρ
По теореме Пифагора имеем равенство: R² = r² + ρ² ⇒ r² = R² - ρ².
r² = 14² - 8² = (14-8)(14+8) = 6*22 = 12*11.
r = √(12*11) = 2√33.
L = 2πr = 2·2√33·π = 4π√33