ответ: 2/(5*x+4)≈-2-10*(x+1)-50*(x+1)²-250*(x+1)³-1250*(x+1)⁴.
Пошаговое объяснение:
Разложение функции f(x) в ряд Тейлора по степеням x-x0 имеет вид:
f(x)=a0+a1*(x-x0)+a2*(x-x0)²+...+an*(x-x0)ⁿ+...
Коэффициенты an определяются по формуле: an=f⁽ⁿ⁾(x0)/n!
Отсюда a0=f(-1)=-2, a1=f'(-1), a2=f''(-1)/2, a3=f'''(-1)/6, a4=f⁽⁴⁾(-1)/24. Находим производные: f'(x)=-10/(5*x+4)², f''(x)=100/(5*x+4)³, f'''(x)=-1500/(5*x+4)⁴, f⁽⁴⁾(x)=30000/(5*x+4)⁵. Подставляя в эти выражения значение x=x0=-1, находим a1=-10, a2=-50, a3=-250, a4=-1250. Окончательно получаем разложение: 2/(5*x+4)≈-2-10*(x+1)-50*(x+1)²-250*(x+1)³-1250*(x+1)⁴
Проверка: положим для примера x=-0,98. Тогда 2/(-0,98*5+4)≈-2,2222 и -2-10*(-0,98+1)-50*(-0,98+1)²-250*(-0,98+1)³-1250*(-0,98+1)⁴≈-2,2222 - результаты совпадают.
2) 1,6(у - 2) -0,4(5 - 3у) = - 0,8(4у + 2) 1,6у -3,2 - 2 +1,2у = -3,2у -1,6
1,6у +1,2у +3,2у =3,2 +2 -1,6 6у = 3,6 у = 0,6