Петя купил 3 кг груш, и у него осталось 5 рублей, а чтобы купить 5 кг ему не хватило 5 рублей. сколько стоит килограмм груш? сколько денег у него было?
Ромб ABCD сторона AB= 10 угол ABC = 150* большая диагональ D2 меньшая D1 точка пересечения О. в прямоугольном треугольнике ABO угол ABO = 150/2 = 75* т.к BO является биссектрисой и высотой. сторона АВ является гипотенузой и равна 10 . АО катет лежащий против угла 75* отсюда АО = АВ * tg 75*=10 * 3.73=37.3 АО является половиной диоганали d2 вся диоганаль 2 * АО = 2*37.3=74.64 катет ВО = АВ * cos 75* = 10 * 0.259 =2.588=2.59 отсюда вся диагональ d1 =2*BO = 2* 2.59=5.176 площадь ромба S= 1/2(d1 * d2) = 0.5(5.176 * 74.64) = 193.19
А) пусть AK : KB = 1 : n AK = x, BL = y, тк AB = CD и BC = AD имеем: cm = ak = x kb = md = nx nd = bl = y lc = an = ny ΔAKN = ΔLME по 1 признаку (ak = cm, an = lc, ∠kan = ∠lcm) => kn = lm аналогично получаем kl = nm Таким образом, в 4-хугольнике klmn противоположные стороны равны => этот 4-хугольник - параллелограмм пусть km ∩ ln = O Δaon = Δloc по 2 признаку (an = lc = ny, ∠oan = ∠ocl и ∠olc = ∠ona как внутренние накрест лежащие при AD || BC) => ∠aon = ∠loc => ∠aoc = 180 => с лежит на прямой ao из равенства треугольников также следует, что ao = oc => точка o - точка пересечения диагоналей парал-ма abcd, что и требовалось доказать б) пусть ak = cm = 2x kb = md = 5x bl = nd = 2y an = lc = 5y заметим, что sin(bad) = sin(180 - bad) = sin(abc) = sinA Sabcd = 7x * 7y * sinA = 49xysinA Sklmn = Sabcd - 2(Sakn + Sbkl) = 49xysinA - 2(10xysinA / 2 + 10xysinA / 2) = 49xysinA - 20xysinA = 29xysinA Sklmn / Sabcd = 29xysinA / (49xysinA) = 29 / 49 ответ: а) доказано; б) 29 / 49.
Составим уравнение:
3х+5=5х-5
5+5=5х-3х
10=2х
х=10/2
х=5 руб. стоит 1 кг. груш.
3*5+5=15+5=20 руб. было у Пети.