a= 3
b= -4
Пошаговое объяснение:
Если при некоторых a и b:
F(x)= ax^4+bx^3+1 нацело делится на (x-1)^2, то и делится на x-1.
Откуда по теореме Безу: F(1) = a+b+1 = 0 → b = -(a+1)
Далее может быть решения:
Первый
ax^4+bx^3+1 = ax^4-(a+1) * x^3+1 = ax^4-(a+1) * x^3 +(a+1) - a =
= a(x^4-1) - (a+1)(x^3-1) = a(x-1)(x+1)(x^2+1)-(a+1)(x-1)(1+x+x^2) =
= (x-1)( a(x+1)(x^2+1) - (a+1)(1+x+x^2) )
Поскольку (x-1)( a(x+1)(x^2+1) - (a+1)(1+x+x^2) ) нацело делится на (x-1)^2, то
G(x) = a(x+1)(x^2+1) - (a+1)(1+x+x^2) делится на x-1 ,таким образом, по теореме Безу снова имеем:
G(1) = 4a -3(a+1) = 0 → a = 3; b = -(3+1) = - 4
Второй
ax^4+bx^3+1 = ax^4-(a+1) * x^3+1 = (x-1)^2* g(x) , где g(x) - некоторый многочлен.
Продифференцируем обе части равенства:
F'(x) = 4ax^3-3(a+1)x^2 = 2(x-1) * g(x) + (x-1)^2 * g'(x) = (x-1) * r(x), где r(x) - некоторый многочлен.
Но тогда F'(x) так же делится на (x-1) , то есть по теореме Безу:
F'(1) = 4a-3(a+1) = 0 → a = 3; b = -(3+1) = - 4
Третий
По обобщенной теореме Виета в данном уравнении:
x1 * x2 * x3 * x4 = 1\a
x1 * x2 * x3 + x1 * x2 * x4 + x4 * x2 * x3 + x1 * x4 * x3 = 0
x1 * x2 + x1 * x3 + x1 * x4 + x2 * x3 + x2 * x4 + x3 * x4 = 0
Учитывая, что x1 = x2 = 1 имеем:
x3 + x4 +2 * x3 * x4 = 0
1 + 2 * x3 + 2 * x4 + x3 * x4 = 0
Умножаем первое уравнение на 2 и вычитаем из него второе :
3 * x3 * x4 -1 = 0
x3 * x4 = 1/3
x1 * x2 * x3 * x4 =1^2 * 1/3 = 1/3 = 1/a → a = 3; b = -4
m² + 7m - 139 = n²
Рассмотрим данное уравнение как
квадратное относительно m:
m² + 7m - 139 - n² = 0
m² + 7m - (139 + n²) = 0
Находим дискриминант:
D = 49 + 4*139 + 4n² =
= 49 + 556 + 4n² = 605 + 4n²
Разложим число 605 на
простые множители: 605 = 5*11*11.
Тогда D = 5*11*11 + 4n²
D - 4n² = 5*11*11
Так как дискриминант должен являться квадратом
целого числа D = k², то рассматриваем случаи
k² - 4n² = 5*11*11 => (k - 2n)(k + 2n) = 5*11*11
k - 2n = 5, k - 2n = 11, k - 2n = 55,
k - 2n = 121 и k - 2n = 605
Соответственно и для k + 2n.
Имеем набор дискриминантов 63², 33²
и 303². Находим соответственно
корни исходного уравнения:
Для D = 33
m₁ = (-7 - 33)/2 = -40/2 = -20
m₂ = (-7 + 33)/2 = 26/2 = 13
Для D = 63
m₁ = (-7 - 63)/2 = -70/2 = -35
m₂ = (-7 + 63)/2 = 56/2 = 28
Для D = 303
m₁ = (-7 - 303)/2 = -310/2 = -155
m₂ = (-7 + 303)/2 = 296/2 = 148
Таким образом уравнению удовлетворяют
12 решений (m, n) = (-20, -11), (m, n) = (-20, 11), (m, n) = (13, -11) и (m, n) = (13, 11), (m, n) = (-35, -29), (m, n) = (-35, 29), (m, n) = (28, -29) и (m, n) = (28, 29), (m, n) = (-155, -151), (m, n) = (-155, 151), (m, n) = (148, -151) и (m, n) = (148, 151)
36*3+9*60=108+540=648