Разложим 36 на множители: 36 = 9 * 4.
Искомое число должно делиться на 9 и на 4.
Если в записи десятизначного числа встречаются все десять цифр, то сумма его цифр 0 + 1 + 2 + 3 + ... + 9 = (1 + 9) * 9 / 2 = 45.
Следовательно, сумма цифр такого числа делится 9 и по признаку делимости на 9 это число делится на 9.
По признаку делимости на 4 последние две цифры числа должны представлять двузначное число, делящееся на 4.
Максимальное двузначное число делящееся на 4 - 96.
Для того, чтобы указать минимальное 10-тизначное число, мы должны искать числа с наименьшими старшими разрядами.
Поэтому искомое число:
1023457896 и последние три его цифры 896.
Для построения графика \left|x\right| + \left|y\right| = 1∣x∣+∣y∣=1 воспользуемся определением модуля числа:
\begin{lgathered}\left|a\right| = \begin{cases} a, & a \geqslant 0 \\ -a & a < 0\end{cases}\end{lgathered}
∣a∣={
a,
−a
a⩾0
a<0
Вся координатная плоскость состоит из четырёх квадрантов, в каждом из которых знак xx и yy остаётся постоянным, поэтому в каждом квадранте можно избавиться от модулей и построить соответствующие фрагменты графика \left|x\right| + \left|y\right| = 1∣x∣+∣y∣=1 .
1. Пусть x > 0x>0 и y > 0y>0 , тогда \left|x\right| + \left|y\right| = x + y = 1∣x∣+∣y∣=x+y=1 , поэтому в I-й четверти строим график функции y = 1 - xy=1−x .
2. Пусть x < 0x<0 и y > 0y>0 , тогда \left|x\right| + \left|y\right| = -x + y = 1∣x∣+∣y∣=−x+y=1 , поэтому во II-й четверти строим график функции y = 1 + xy=1+x .
3. Пусть x < 0x<0 и y < 0y<0 , тогда \left|x\right| + \left|y\right| = -x - y = 1∣x∣+∣y∣=−x−y=1 , поэтому в III-й четверти строим график функции y = -1 - xy=−1−x .
4. Пусть x > 0x>0 и y < 0y<0 , тогда \left|x\right| + \left|y\right| = x - y = 1∣x∣+∣y∣=x−y=1 , поэтому в IV-й четверти строим график функции y = x - 1y=x−1 .
График с пояснениями и этапами построения приведён на прилагаемом рисунке.
1/4 часа=1/4*60 мин=15 мин
1/4 м=1/4*100 см=25 см