Семь монет расположены по кругу. известно, что какие-то четыри из них, идушие подряд фальшивые и что каждая фальшивая монета легче настоящей. объясните, как найти две фальшивые монеты за одно взвешивание на чашечных весах без гирь.
А) 12 и 32 наибольший общий делитель 4 (12:4=3 и 32:4=8) разложим на множители: 12=2*2*3 и 32=2*2*2*2*2 б) 14 и 42 наибольший общий делитель 14 (14:14=1 и 42:14=3) разложим на множители: 14=2*7 и 42=2*3*7 в) 68 и 102 наибольший делитель 34 (68:34=2 102:34=3) разложим на множители: 68= 2*2*17 и 102=2*3*17 г) 480 и 669 наибольший общий делитель 3 (480:3=160 и 669:3=223) разложим на множители: 480=2*2*2*2*2*3*5 669=3*223 д) 23 и 96 и 112 наибольший общий делитель для этих 3-х чисел 1 (число 23 можно разложить только на множители 1 и 23, 96 и 112 на 23 не делятся) разложим на множители: 23=23*1 и 96=2*2*2*2*2*3 и 112=2*2*2*2*7 для чисел 96 и 112 - наибольший делитель 16 (96:16=6, 112:16=7) е) 21 и 126 и 252 наибольший общий делитель 21 (21:21=1, 126:21=6, 252:21=12) разложим на множители: 21=7*3 и 126=2*3*3*7 и 252=2*3*3*7
Так как as=bs=8 и bc=ac=17, то вершина пирамиды S лежит в вертикальной плоскости.Проведём вертикальную секущую плоскость через вершины S и С. В сечении имеем треугольник SDC, где D - основание высоты из точки С равнобедренного треугольника АВС. Находим стороны треугольника SDC: DC = √(17² - (1/2)4√7)²) = √(289 - 28) = √261 = 16.15549. SD = √(8² - (1/2)4√7)²) = √(64 - 28) = √36 = 6. Высота из вершины S является высотой пирамиды SО. Находим её по формуле: Подставим значения: a b c p 2p 16.155494 15 6 18.577747 37.15549442 и получаем высоту SО = 90 / √261 = 30 / √29 = 5.570860145. Площадь основания пирамиды находим по формуле Герона: a b c p 2p S 17 17 10.583005 22.291503 44.58300524 85.48684109. Площадь основания можно выразить так: S = 85.48684109 = √7308 = 6√(7*29). Тогда получаем объём пирамиды: V = (1/3)S*H = (1/3)*(6√(7*29))*(30/√29) = 60/√7 = 22,67787 куб. ед.
Рисовать лень, попробую на пальцах.
Итак движение по часовой стрелке от верха 7ми угольника.
Берем первые 2 монеты начиная с вершиныи и ложим на одну чашу, последующие 2 монеты но вторую чашу весов.
Если перевесили первые 2 монеты отсюда следует что как минимум одна из монет на первой чаше настоящая, значит на второй чаше лежат две фальшивые.
Если перевесила вторая чаша то соответственно как минимум одна из монет на второй чаше настоящая, значит на первой чаше лежит две фальшивых.
Если весы остались а равновесии то на каждой из чаш лежит по 2 фальшивые монеты.