На циферблате имеется 60 делений, на которые приходится 360 градусов. Значит, когда стрелка пройдёт 1 деление, то она переместиться на 360:60=6 градусов. Минутная стрелка за 15 мин пройдёт 6*15=90 градусов. Определим, сколько делений пройдёт часовая стрелка за то время, пока мин. стрелка проходит 15 минут, зная, что часовая стрелка проходит 5 делений за 1 час, то есть за то время, за которое минутная стрелка проходит 60 делений. 5 делений - 1 час (60 мин) х делений - 15 минут х=5*15:60=1,25 (делений) Теперь определим, на сколько градусов повернётся часовая стрелка, пока минутная поворачивается на 90 градусов (то есть минутная проходит 15 минут): 1 деление - 6 градусов 1,25 делений - х градусов х=1,25*6:1=7,5 (градусов) Угол между минутной и часовой стрелками составляет 90-7,5=82,5 градусов=82 градуса 30 минут
1. 7/12 и 5/8 Приведём числа к общему знаменателю. НОК (12;8)=24 Значит первую дробь домножаем на 2, а вторую на 3 (чтобы в знаменателе получилось 24). Тогда 7/12 = 14/24; 5/8 = 15/24. А такие дроби уже легко сравнить, очевидно что 15/24 > 14/24. Значит 5/8 > 7/12. 2. 3 7/9 и 3 5/6 Сначала избавимся от целых частей, сделав дробь неправильной: 3 7/9 = 34/9 3 5/6 = 23/6 Теперь приведём дроби к общему знаменателю. НОК (9;6) = 18. Значит первую дробь домножаем на 2, а вторую на 3: 34/9 = 68/18; 23/6 = 69/18. 69/18 > 68/18, а значит 3 5/6 > 3 7/9.
Р=1/10*1/10*1/10*1/10=0,1⁴=0,0001