Рассмотрим произвольный ряд подряд идущих натуральных чисел: x₁, x₂,...x₁₀. Пусть сумма цифр первого числа кратна пяти, а следующее за ним число с суммой цифр кратной пяти будет число x₁ + 5 = x₆. То есть среди этой десятки чисел найдутся два с суммой цифр кратной пяти. Пусть теперь первое число не кратно пяти и равно 5x₁ + 1. Тогда первое число с суммой цифр кратной пяти будет число (5x₁ + 1) + 4= 5x₁ + 5= x₅, а второе x₁₀. Аналогично, если первое число ряда 5x₁ + 2, то первое число ряда с суммой цифр кратной пяти будет число (5x₁ + 2) + 3 = 5x₁ + 5= x₄, а второе x₉ и так далее. Таким образом, среди любых десяти подряд идущих натуральных чисел найдутся минимум два с суммой цифр кратной пяти. А это значит, что максимальное число подряд идущих чисел с суммой цифр не кратной пяти не превышает восьми. Требуемый пример легко находится: 56, 57, 58, 59, 60, 61, 62, 63.
ответ: 8.
2)8sin²x+6sinxcosx-7sin²x-7cos²x=0/cos²x≠0
tg²x+6tgx-7=0
tgx=a
a²+6a-7=0
a1+a2=-6 U a1*a2=-7
a1=-7⇒tgx=-7⇒x=-arctg7+πn
a2=1⇒tgx=1⇒x=π/4+πn