Произведение цифр. Для начала попробуем разложить число 40 на общие множители: 40 = 5 * 2 * 2 * 2
В итоге мы получили 4 цифры, а нам нужно получить пять. Если мы добавим цифру 1 в произведение, то результат не изменится: 40 = 5 * 2 * 2 * 2 * 1
Итого, имеем 5 цифр, из которых можно составить пятизначное число! Первое условие удовлетворено.
Но мы пока не можем дать точного ответа, потому что не все составленные числа будут удовлетворять второму условию - делимости на 12.
Вспоминаем (или найдем) признаки делимости. Признак делимости на 12: Число делится на 12 тогда и только тогда, когда оно делится на 3 и на 4.
Признак делимости на 3: Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.
Признак делимости на 4: Число делится на 4 тогда и только тогда, когда число из двух последних его цифр нули или делится на 4.
Проверим делимость на 3. 5 + 2 + 2 + 2 + 1 = 12
Видим, что при любой комбинации цифр мы получил число, делящееся на 3!
Проверим делимость на 4. Для этого число из двух последних цифр должно быть четным (иначе оно просто не может делиться на 4). Из цифр 5, 2 и 1 мы можем составить только три варианта таких чисел: 52, 22, 12
52:4 = 13 - делится без остатка 22:4 = 6.5 - не делится нацело 12:4 = 3 - делится без остатка
Итак, мы выяснили, что искомое число должно быть такого вида: XXX52 или XXX12
Подставляя все имеющиеся цифры, которые мы нашли ранее, получаем такие варианты: 12252, 21252, 22152, 22512, 25212, 52212
Выбираем любое из этих чисел - оно и будет ответом на вопрос.
Обозначим вершины треугольника АВС, основание высоты - Н. Длина окружности =2 π r 2 п r=50 π Коротко запись задачи выглядит так: r=50п:2п=25 32-25=7 Р= 2√(25²-7²)+2√(32²+24²)=128см Подробно: Высота равнобедренного треугольника - срединный перпендикуляр. Центр описанной окружности треугольника лежит на пересечении срединных перпендикуляров. Так как радиус меньше высоты треугольника, центр лежит на этой высоте. Обозначим центр О. Расстояние от вершины треугольника В до центра окружности О равно R Расстояние ОН от центра окружности до середины основания треугольника АВС 32-25=7 см Соединим центр О с вершиной угла основания. Получим треугольник АОН. АО= радиусу и равна 25 см Найдем половину основания по формуле Пифагора из треугольника АОН АН=√(25²-7²)=24 см Основание треугольникаАС равно 2*24=48см Из треугольника АВН найдем боковую сторону треугольника АВ АВ=√(32²+24²)=40смВС=АВ=40 см Периметр Δ АВС Р=2·40+48=128 см
1 велосипедист: скорость 18 км/час - за 2 часа проехал 36 км 2 велосипедист: скорость 16 км/час- за 1 час проехал 16 км 3 велосипедист: скорость х км/час -выехал
найдем время когда третий догонит второго: (х-16)- скорость сближения 16/(х-16)= t время встречи
найдем время когда 3 догонит первого (х-18)- скорость сближения 36/(х-18)= время встречи и оно t+4
имеем систему:
решим второе уравнение с подстановкой из первого:
Очевидно что скорость 15 км/час нам не подходит, т.к. скорость должна быть больше скоростей первых велосипедистов
Рассмотрим условия по порядку.
Произведение цифр.
Для начала попробуем разложить число 40 на общие множители:
40 = 5 * 2 * 2 * 2
В итоге мы получили 4 цифры, а нам нужно получить пять.
Если мы добавим цифру 1 в произведение, то результат не изменится:
40 = 5 * 2 * 2 * 2 * 1
Итого, имеем 5 цифр, из которых можно составить пятизначное число!
Первое условие удовлетворено.
Но мы пока не можем дать точного ответа, потому что не все составленные числа будут удовлетворять второму условию - делимости на 12.
Вспоминаем (или найдем) признаки делимости.
Признак делимости на 12: Число делится на 12 тогда и только тогда, когда оно делится на 3 и на 4.
Признак делимости на 3: Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.
Признак делимости на 4: Число делится на 4 тогда и только тогда, когда число из двух последних его цифр нули или делится на 4.
Проверим делимость на 3.
5 + 2 + 2 + 2 + 1 = 12
Видим, что при любой комбинации цифр мы получил число, делящееся на 3!
Проверим делимость на 4.
Для этого число из двух последних цифр должно быть четным (иначе оно просто не может делиться на 4).
Из цифр 5, 2 и 1 мы можем составить только три варианта таких чисел:
52, 22, 12
52:4 = 13 - делится без остатка
22:4 = 6.5 - не делится нацело
12:4 = 3 - делится без остатка
Итак, мы выяснили, что искомое число должно быть такого вида:
XXX52 или XXX12
Подставляя все имеющиеся цифры, которые мы нашли ранее, получаем такие варианты:
12252, 21252, 22152, 22512, 25212, 52212
Выбираем любое из этих чисел - оно и будет ответом на вопрос.