. Условие, что выражение равно единице, можно записать так:
(100 + n)k(100 - n)l = 100k + l. Так как правая часть четна, то и левая часть должна быть четна, значит, n четно. Аналогично, левая часть делится на 5, значит, n делится на 5. Значит, n делится на 10. Можно перебрать все 9 возможных вариантов: n = 10, 20, ..., 90. Например, если n = 10, то левая часть делится на 11, что невозможно.Можно обойтись без перебора: пусть n не делится на 25. Тогда числа 100 - n и 100 + n тоже не делятся на 25. Значит, пятерка входит в разложение левой части на простые множители ровно k + l раз. Но она входит в разложение правой части 2(k + l ) раз -- противоречие. Итак, n делится на 25. Аналогично доказывается, что n делится на 4. Но тогда n делится на 100, что невозможно, ибо 0 < n < 100.
для начала нам нужно упростить выражения с y,
\frac{y^2-4y+4}{y^2-4} : \frac{10y-20}{y^2+2y}
y
2
−4
y
2
−4y+4
:
y
2
+2y
10y−20
если ты написал все правильно в условии то мы сможем такое решить: начнем упрощать выражение --->
\begin{gathered}\frac{(y-2)^2}{(y-2)(y+2)}*\frac{y(y+2)}{10(y-2)}\\\end{gathered}
(y−2)(y+2)
(y−2)
2
∗
10(y−2)
y(y+2)
выражения сворачиваем по формулам , квадрат разности и разность квадратов . Пойдем дальше сокращаем
\frac{(y-2)^2*y(y+2)}{(y-2)(y+2)*10(y-2)}=
(y−2)(y+2)∗10(y−2)
(y−2)
2
∗y(y+2)
= \frac{y}{10}-
10
y
− тем самым имеем такое выражение , после подставляем наше значение при y=80y=80 , тем самым имеем что все наше выражение =\frac{80}{10} =0,8=
10
80
=0,8 .
ответ: 0.8
боезапас 27+48=75 снарядов