М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Maximgrechka
Maximgrechka
26.11.2020 00:38 •  Математика

Вправильной четырехугольной пирамиде sabcd,все ребра равны 1,найдите косинус угла между плоскастями sad и sbc

👇
Ответ:
Проведём осевое сечение через апофемы противоположных граней SAD и SBC.
Боковые грани - равносторонние треугольники со сторонами по 1.
Апофема равна 1*cos 30 = √3/2.
Полученный в сечении треугольник - равнобедренный, с боковыми сторонами (апофемами) по √3/2 и основанием, равным 1(стороне квадрата в основании пирамиды). Плоскость этого треугольника перпендикулярна заданным граням, поэтому угол в вершине его - это искомый угол.
По трём сторонам треугольника находим углы по формуле:
cos B = (a²+c²-b²)/2ac.
a b c p 2p S 2 0.866025 1 0.8660254 1.3660254 2.732050808 0.35355339 0.75 1 0.75 1 cos A = 0.5773503 cos B = 0.3333333 cos С = 0.57735027 пи Аrad = 0.9553166 Brad = 1.2309594 Сrad = 0.95531662 3.141593 3.141593 Аgr = 54.73561 Bgr = 70.528779 Сgr = 54.7356103 180 - сумма углов.
cos B = ((3/4)+(3/4)-1)/(2*(√3/2)*(√3/2)) = 1/3 ≈ 0,33333.
4,5(46 оценок)
Открыть все ответы
Ответ:
waleruwka
waleruwka
26.11.2020

Пусть за х часов второй пешеход пришел в пункт А. Расстояние до встречи пешеходов s1, после встречи s2. Тогда до встречи его скорость второго пешехода была \frac{s2}{40}, а после встречи \frac{s1}{40+x}. Скорость второго пешехода до встречи и после встречи была одинаковой, значит \frac{s1}{40+x}=\frac{s2}{40}, откуда \frac{s1}{s2}=\frac{40+x}{40}. У первого пешехода до встречи была скорость \frac{s1}{40}, а после встречи \frac{s2}{32}, скорость первого пешехода до встречи и после встречи была одинаковой, значит \frac{s1}{40}=\frac{s2}{32}, откуда \frac{s1}{s2}=\frac{40}{32}. По условию задачи составим уравнение\frac{40+x}{40}=\frac{40}{32}.

1280+32х=1600

32х=320

х=10

ответ: После встречи второй пешеход придет в пункт А через 10 часов

 

 

 

 

 

 

 

 

 

 

 

 

4,8(27 оценок)
Ответ:
proskurina773
proskurina773
26.11.2020

Пусть за х часов второй пешеход пришел в пункт А. Расстояние до встречи пешеходов s1, после встречи s2. Тогда до встречи его скорость второго пешехода была \frac{s2}{40}, а после встречи \frac{s1}{40+x}. Скорость второго пешехода до встречи и после встречи была одинаковой, значит \frac{s1}{40+x}=\frac{s2}{40}, откуда \frac{s1}{s2}=\frac{40+x}{40}. У первого пешехода до встречи была скорость \frac{s1}{40}, а после встречи \frac{s2}{32}, скорость первого пешехода до встречи и после встречи была одинаковой, значит \frac{s1}{40}=\frac{s2}{32}, откуда \frac{s1}{s2}=\frac{40}{32}. По условию задачи составим уравнение\frac{40+x}{40}=\frac{40}{32}.

1280+32х=1600

32х=320

х=10

ответ: После встречи второй пешеход придет в пункт А через 10 часов

 

 

 

 

 

 

 

 

 

 

 

 

4,5(94 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ