Решение
Пусть K — точка пересечения биссектрисы угла ADB с диагональю АС. Поскольку $ \angle$KDB = $ \angle$KCB = 35o, то точки K, B, C, D лежат на одной окружности. Поэтому
$\displaystyle \angle$BKC = $\displaystyle \angle$BDC = 40o, $\displaystyle \angle$ABK = $\displaystyle \angle$BKC - $\displaystyle \angle$BAC = 40o - 20o = 20o.
Тогда AK = BK и радиус окружности, описанной около треугольника AKD, равен радиусу первой окружности ( $ \angle$ADK = $ \angle$KDB = 35o). Поэтому
$\displaystyle \angle$CAD = $\displaystyle \angle$ACD = $\displaystyle {\frac{180^{\circ} - 110^{\circ}}{2}}$ = 35o.
Следовательно, угол между диагоналями равен
$\displaystyle \angle$BDC + $\displaystyle \angle$ACD = 40o + 35o = 75o.
ответ
75o.
2) 1:10=1/10 бассейна наполняет 2-ая труба за 1 час
3) 1:6=1/6 бассейна освобождает 3-я труба за 1 час
4) 1/12+1/10-1/6=(5+6-10)/60=1/60 бассейна наполнится при одновременной работе 3 труб за 1 час
5) 1/2:1/60=30 часов наполняется бассейн на половину при одновременной работе 3 труб
6) 1/60*5=1/12 бассейна наполнится 3 трубами за 5часов
ответ: если открыть все три трубы одновременно, то за 5ч полбассейна не наполнится, а всего лишь 1/12 бассейна.