Решение: Составим на эту задачу модель в виде систем уравнений: Выразим y через x с 1 уравнения: Тогда мы можем сказать, что второе уравнение будет таким: Т.о., наша сумма зависит от x. Т.е. мы составили зависимость S(x). Так как в задаче требуется найти минимум, найдем точки экстремума функции S(x). Для этого найдем производную. Точки экстремума находятся там, где производная функции равна 0. Из первого уравнения можем сказать, что y = 5 тоже. Т.о., минимальная сумма кубов числа должна равняться ответ: 5 и 5 (сумма = 250)
754*60=45240
2504*82=205328
364*276=100464
407*306=124542
852:6=142
49+26*(54-27)=751
36:9+18*5=94