М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
poly77
poly77
27.10.2021 04:41 •  Математика

Найдите значение числового выражения. 468 - 396 : (42 - 42 : 7) + 8 753 + (2747 + 3998) + 1002 (8935 + 6639) + (7361 + 125) 4957 + 8243 + 495) + 7205

👇
Ответ:
rekrifcm
rekrifcm
27.10.2021
Это все одно выражение?
4,7(97 оценок)
Открыть все ответы
Ответ:
Ира2806
Ира2806
27.10.2021
Перепишем уравнения в цилиндрической системе координат: (x, y, z) меняются на (r, φ, z) по формулам x = r cos(φ - arctg 3/4), y = r sin(φ - arctg 3/4) – арктангенс возник из соображений удобства, чтобы третье уравнение выглядело поприличнее. Откуда отсчитывать углы, для нас не принципиально.

Первое уравнение: 
4=x^2+y^2=r^2\cos^2(\dots)+r^2\sin^2(\dots)=r^2\\
r=2

Второе уравнение не меняется.

Третье уравнение:
z=12-3x-4y=12-3r\cos\left(\varphi-\mathop{\mathrm{arctg}}\dfrac34\right)-4r\sin\left(\varphi-\mathop{\mathrm{arctg}}\dfrac34\right)=\\=12-3r\cdot\dfrac45\cos\varphi-3r\cdot\dfrac35\sin\varphi-4r\cdot\dfrac45\sin\varphi+4r\cdot\dfrac35\cos\varphi=\\=12-5r\sin\varphi

Итак, уравнения поверхностей, ограничивающих тело, выписаны выше: r = 2, z = 1, z = 12 - 5r sin φ. Тело, которое они ограничивают, изображено на приложенном рисунке: это часть цилиндра, вырезанная двумя плоскостями.

Сформулируем условия в виде неравенств. 
1 ≤ z ≤ 12 - 5r sin φ
0 ≤ φ ≤ 2π
0 ≤ r ≤ 2

Осталось вспомнить, что элемент объёма в цилиндрических координатах есть dV = r dr dφ dz, и вычислить интеграл:
\displaystyle \iiint_VdV=\int_0^{2\pi}d\varphi\int_0^2r\,dr\int_1^{12-5r\sin\varphi}dz=\\=\int_0^{2\pi}d\varphi\int_0^2(11-5r\sin\varphi)r\,dr=2\pi\cdot22=44\pi

ответ: 44π.

________________________________________

Для самопроверки получим этот ответ без интеграла. 
Самая нижняя точка, в которой наклонная плоскость пересекает цилиндр, это z = 12 - 5 * 2 = 2, самая высокая – z = 12 + 5 * 2 = 22. Тогда объём равен сумме объёма цилиндра с высотой 2 - 1 = 1 и половины объёма цилиндра с высотой 22 - 2 = 20.
V = S * (h1 + h2 / 2) = 4π * (1 + 10) = 44π
Стройного интеграла вычислить объем тела, ограниченного заданными поверхностями.
4,7(89 оценок)
Ответ:
ValeriaSalvatore
ValeriaSalvatore
27.10.2021
Связь между радиусом вписанной окружности r и радиусом описанной окружности R определяется формулой:
r=Rcos \frac{180^0}{n}, где n- число сторон многоугольника.
Отсюда их соотношение равно:
\frac{r}{R}=cos \frac{180^0}{n}.
Отношение площадей кругов равно отношению квадратов их радиусов:
\frac{Sv}{So} = \frac{r^2}{R^2}=cos^2 \frac{180^0}{n} .
По условию задачи оно равно 0,75 или 3/4.
Получаем cos \frac{180^0}{n} = \sqrt{ \frac{3}{4} } = \frac{ \sqrt{3} }{2} .
Значение √3/2 соответствует углу 30°.
Значит, 180°/n = 30°, отсюда n = 180/30 = 6.
Если периметр многоугольника равен 12, а число сторон равно 6, то длина стороны составит a = 12/6 = 2 см.
Радиус описанного круга для шестиугольника R = a = 2 см.
Радиус вписанного круга r = a*(√3/2) = 2*(√3/2) = √3 см.
4,7(5 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ