Перепишем уравнения в цилиндрической системе координат: (x, y, z) меняются на (r, φ, z) по формулам x = r cos(φ - arctg 3/4), y = r sin(φ - arctg 3/4) – арктангенс возник из соображений удобства, чтобы третье уравнение выглядело поприличнее. Откуда отсчитывать углы, для нас не принципиально.
Первое уравнение:
Второе уравнение не меняется.
Третье уравнение:
Итак, уравнения поверхностей, ограничивающих тело, выписаны выше: r = 2, z = 1, z = 12 - 5r sin φ. Тело, которое они ограничивают, изображено на приложенном рисунке: это часть цилиндра, вырезанная двумя плоскостями.
Сформулируем условия в виде неравенств. 1 ≤ z ≤ 12 - 5r sin φ 0 ≤ φ ≤ 2π 0 ≤ r ≤ 2
Осталось вспомнить, что элемент объёма в цилиндрических координатах есть dV = r dr dφ dz, и вычислить интеграл:
ответ: 44π.
________________________________________
Для самопроверки получим этот ответ без интеграла. Самая нижняя точка, в которой наклонная плоскость пересекает цилиндр, это z = 12 - 5 * 2 = 2, самая высокая – z = 12 + 5 * 2 = 22. Тогда объём равен сумме объёма цилиндра с высотой 2 - 1 = 1 и половины объёма цилиндра с высотой 22 - 2 = 20. V = S * (h1 + h2 / 2) = 4π * (1 + 10) = 44π
Связь между радиусом вписанной окружности r и радиусом описанной окружности R определяется формулой: , где n- число сторон многоугольника. Отсюда их соотношение равно: Отношение площадей кругов равно отношению квадратов их радиусов: По условию задачи оно равно 0,75 или 3/4. Получаем Значение √3/2 соответствует углу 30°. Значит, 180°/n = 30°, отсюда n = 180/30 = 6. Если периметр многоугольника равен 12, а число сторон равно 6, то длина стороны составит a = 12/6 = 2 см. Радиус описанного круга для шестиугольника R = a = 2 см. Радиус вписанного круга r = a*(√3/2) = 2*(√3/2) = √3 см.