).8 сотен и 6 единиц,а десятков в 2 раза меньше,чем сотен; 2) 3 десятка,а сотен на 4 больше,чем десятков,и на 2 больше,чем единиц; 3) 7 сотен,десятков в 7 раз меньше,чем сотен,а единиц на 7 меньше,чем сотен
Решение: Обозначим искомые числа за (х) и (у), тогда сумма этих чисел равна: х+у=120 40% первого числа составляет: 40%*х :100%=0,4*х=0,4х 30% второго числа составляет: 30%*у :100%=0,3*у=0,3у Сумма этих чисел равна: 0,4х+0,3у=41 Решим два уравнения, которые представляют систему уравнений: х+у=120 0,4х+0,3у=41 Из первого уравнения найдём значение (х) х=120-у подставим значение (х) во второе уравнение: 0,4*(120-у) +0,3у=41 48 -0,4у +0,3у=41 -0,1у=41-48 -0,1у=-7 у= -7 : -0,1 у=70 - второе число х=120-70=50 - первое число
Пусть наибольшее возможное значение наибольшего общего делителя равно d. Тогда каждое из 13 чисел делится на d, значит, и их сумма, 1988, делится на d. Кроме того, должно выполняться неравенство 1988/d≥13 (каждое из 13 чисел не меньше d).
Разложим на множители число 1988: 1988=2²*7*71. Для того, чтобы число d было наибольшим, число 1988/d должно быть наименьшим возможным, но не меньше 13. Поскольку 1988 не делится на 13, наимеьшим возможным значением дроби является число 2*7=14. А значит, наибольшим возможным значением делителя d является число 1988/14=142. Оно достигается, если одно из чисел равно 2*142=284, а 12 других равны 142.
2)711
ответ:1)846,2)711