1/log(x-1)x/6 >= -1
logf(x) g(x) или logf(x) h(x) (f(x)-1)(g(x) - h(x)) или 0
log(a)b a>0 b>0 a≠1
знаменатель не равен 0
ОДЗ x-1> 0 x>1
x-1≠1 x≠2
x/6>0 x>0
x/6 ≠ 1 x≠6
x∈(1 2) U (2 6) U (6 +∞)
log(x-1) x/6 = a
1/a >= -1
(1 + a) / a >=0
[-1] (0)
a∈(-∞ -1] U ( 0 +∞)
1. log(x-1) x/6 <= -1
log(x-1) x/6 <= log(x-1) (1/(x-1))
(x-2)(x/6 - 1/(x-1)) <=0
(x-2)(x² - x - 6)/(x-1) <=0
D=1+24=25 x12=(1 +-5)/2 = 3 -2
(x-2)(x-3)(x+2)/(x-1) <=0
[-2] (1) [2] [3]
x∈[-2 1) U [2 3]
2/ log(x-1) x/6 > 0
log(x-1) x/6 > log(x-1) 1
(x-2)(x/6 - 1) >0
(x-2)(x-6) > 0
(2) (6)
x∈(-∞ 2) U (6 +∞)
ответы 1 и 2 пересекаем с ОДЗ x∈(1 2) U (2 6) U (6 +∞)
ответ х∈(2 3] U (6 +∞)
ответ:
пошаговое объяснение:
всего было n * (n - 1) / 2 игр между профессионалами (в каждой такой игре победил профессионал), 2n * (2n - 1)/2 игр между любителями (соответственно, в таких играх побеждали любители) и n * 2n = 2n^2 игр, в которых приняли участие профессионал и любитель (допустим, в x из них победил профессионал, и в 2n^2 - x победил любитель).
оценим возможное отношение числа побед профессионалов к числу побед любителей, оно равно
[*}
это отношение будет наименьшим при x = 0, когда все любители обыграли всех профессионалов, тогда оно равно (n - 1)/(8n - 2).
это отношение будет наибольшим при x = 2n^2 (это соответствует всем поражениям любителей в матчах с профессионалами), значение отношения (5n - 1)/(4n - 2).
найдем, при каких n 7/5 попадает в этот промежуток:
итак, все возможные n - 1, 2 и 3. заметим, что общее количество игр 3n (3n - 1)/2 должно быть кратно 7 + 5 = 12, это выполнено только для n = 3.
подробнее - на -
то есть находим нули функции для этой параболы
Парабола ветвями вверх. значит решение (-∞;0,5] в объединении [2;+∞)