М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Lizok2509
Lizok2509
06.01.2023 22:01 •  Математика

Составить уравнения .сумма 48 и неизвестного числа равна разности100

👇
Ответ:
48-х=100
×=100-48
х=52
4,4(98 оценок)
Открыть все ответы
Ответ:
Зейна12
Зейна12
06.01.2023

Дана функция у = 2х² - х⁴.

1.Область определения функции: x ∈ R, или -∞ < x < ∞.

2. Нули функции. Точки пересечения графика функции с осью ОХ.

2х² - х⁴ = 0, х²(2 - х²) = 0. Тогда х² = 0 и (или) 2 - х² = 0.

x₁ = 0.

x₂ = √2.

х₃ = -√2.

Точки пересечения графика функции с осью ОУ при х = 0 ⇒ у = 0.

3. Промежутки знакопостоянства функции.

Для нахождения промежутков знакопостоянства функции y=f(x) надо решить неравенства f(x)>0, f(x)<0.

По пункту 2 имеем 4 промежутка значений аргумента, в которых функция сохраняет знак:

(−∞;−√2), (−√2;0), (0;√2), (√2;+∞).

Для того, чтобы определить знак функции на каждом из этих промежутков, надо найти значение функции в произвольной точке из каждого промежутка. Точки выбираются из соображений удобства вычислений.

x = -2 -1 1 2

y = -8 1 1 -8.

В промежутках (−∞;−√2) и (√2;+∞) функция принимает отрицательные значения, в промежутках (−√2;0) и (0;√2) функция принимает положительные значения.

4. Симметрия графика (чётность или нечётность функции).

Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x).

Итак, проверяем:

- x^{4} + 2 x^{2} = - x^{4} + 2 x^{2}

- Да

- x^{4} + 2 x^{2} = - -1 x^{4} - 2 x^{2}

- Нет

Значит, функция является чётной.

5. Периодичность графика - нет.

6.Точки разрыва, поведение функции в окрестностях точек разрыва, вертикальные асимптоты - нет.

7. Интервалы монотонности функции, точки экстремумов, значения функции в точках экстремумов.

Находим производную заданной функции:

y' = 4x - 4x³.

Приравниваем производную нулю: 4x - 4x³ = 4x(1 - x²) = 0,

4x = 0, x = 0.

x² = 1, х = 1, x = -1.

Критических точек три: х = 0, х = 1, x = -1.

Находим значения производной левее и правее от критических.

x = -2 -1 -0.5 0 0.5 1 2

y' = 24 0 -1.5 0 1.5 0 -24.

Где производная положительна - функция возрастает, где отрицательна - там убывает.

Убывает на промежутках (-oo, -1] U [0, oo).

Возрастает на промежутках (-oo, 0] U [1, oo).

8. Интервалы выпуклости, точки перегиба.

Найдем точки перегибов, для этого надо решить уравнение

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0

(вторая производная равняется нулю),

корни полученного уравнения будут точками перегибов для указанного графика функции:

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0.

Вторая производная 4 \left(- 3 x^{2} + 1\right) = 0.

Решаем это уравнение.

Корни этого уравнения:

x_{1} = - \frac{\sqrt{3}}{3}

x_{2} = \frac{\sqrt{3}}{3}

Интервалы выпуклости и вогнутости:

Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:

Вогнутая на промежутках [-sqrt(3)/3, sqrt(3)/3].

Выпуклая на промежутках (-oo, -sqrt(3)/3] U [sqrt(3)/3, oo).

9. Поведение функции в бесконечности. Наклонные (в частности, горизонтальные) асимптоты - нет.

10. Дополнительные точки, позволяющие более точно построить график.

11. Построение графика функции - дан в приложении.

4,5(53 оценок)
Ответ:
F777FF
F777FF
06.01.2023

1) 2√10 см; 2√15 см

2) ∠АОВ=2·∠ACB или 2·arcsin√\frac{2}{5}

∠АОС=2·∠AВС или 2·arcsin√\frac{3}{5} .

Пошаговое объяснение:

1) Высота, опущенная из вершины прямого угла делит прямоугольник на 2 подобных ему прямоугольника. Это следует из первого признака подобия (равенство двух углов)

Рассмотрим рисунок. Имеем исходный прямоугольный ΔАВС и подобные ему ΔКАС и ΔКВА.

Примем высоту АК за х. Тогда из подобия треугольников получим:

х/4=6/х ⇒ х²=24 ⇒ х=√24.

Из прямоугольных ΔКАС и ΔКВА найдем катеты ΔАВС.

АВ=√(ВК²+АК²)=√(16+24)=2√10 см

АС=√(КС²+АК²)=√(36+24)=2√15 см

2) Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Пусть т. О - середина гипотенузы  ΔАВС. Тогда получаем два равнобедренных  ΔАВО  и ΔАСО с основаниями АВ и АС соответственно.

Из свойств сегментов окружностей известно, что угол сегмента окружности равен 2·arcsin( с/2R), где с-длина хорды, R-радиус окружности.

Тогда  ∠АОВ=2·arcsin( AB/BC) ⇒   ∠АОВ=2·arcsin( sin∠ACB)=2·∠ACB.

Соответственно:

∠АОС=2·arcsin( AС/BC) ⇒   ∠АОС=2·arcsin( sin∠AВС)=2·∠AВС.

Если нужен цифровой ответ, то

∠АОВ=2·∠ACB=2·arcsin( АВ/ВС)= 2·arcsin(2√10/10)=2·arcsin√\frac{2}{5}

∠АОС=2·arcsin( AС/BC)= 2·arcsin(2√15/10)=2·arcsin√\frac{3}{5}


Впрямоугольном треугольнике высота, опущенная из прямого угла делит гипотенузу н отрезки 4 см и 6 см
Впрямоугольном треугольнике высота, опущенная из прямого угла делит гипотенузу н отрезки 4 см и 6 см
4,6(48 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ