x-4*корень (х+4)-1 меньше 0 !ОДЗ: х больше или равно -4
(х-1) меньше 4*корень из (х+4)
рассматриваем 2 варианта:
1.
(х-1) меньше или равно 0 , т.е. х меньше или равно 1
в этом случае неравенство выполняется при любом х (т.к. арифм. квадратный корень всегда больше или равен 0)
значит х меньше или равно 1, но больше или равно -4 (это из ОДЗ)
[-4; 1]
2.
х-1 больше 0, т.е. х больше 1,
тогда можем возвести в квадрат обе части неравенства
(х-1)^2 меньше 16*(х+4)
x^2-2x+1-16x-64 меньше 0
х^2-18x-63 меньше 0
D=324+252=576
x=(18+-24)/2
x=21; -3
(х-21)(х+3) меньше 0
решением этого неравенства является промежуток ; ]-3; 21[, но в рассматриваемом нами случае (х больше 1) решением будет ]1; 21[
Таким образом объединяем решения первой и второй части, получаем:
[-4;21[
128
Пошаговое объяснение:
Остановимся на этом моменте:
n(n+1)/2=64k
n(n+1)=128k
Заметим, что среди чисел n и n+1 ровно одно четное и одно нечетное! (так как они идут по порядку).
Также 128=2⁷
Это значит, что 128 делится только числа, кратные 2-м (2, 4, 8, 16 и т.д), то есть делится только на четные числа!
Нечетное число никогда нацело не поделится на четное.
Таким образом произведение n(n+1) поделится на 128 только в том случае, если один из множителей будет делится на 128.
То есть n может равняться 128, 256, 512 и т.д
Наименьшее чётное: n=128