М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
00Alcatraz00
00Alcatraz00
10.02.2023 12:57 •  Математика

Запиши и прочитай число которое состоит из 2дес и 8 единиц ,6дес ,9 дес 10 дес,4 дес.под каждым из этих чисел запиши число которое на 20 меньше его

👇
Ответ:
LizaIlina1
LizaIlina1
10.02.2023
28-8, 60-40, 90-70, 100-80, 40-20.
4,6(45 оценок)
Ответ:
ZayacZnaniy
ZayacZnaniy
10.02.2023
1) 2 дес. 8 ед. = 28 = двадцать восемь. 6 дес. = 60 = шестьдесят. 9 дес. = 90 = девяносто. 10 дес. = 100 = сто. 4 дес. = 40 = сорок. 2) 28-20 = 8. 60-20=40. 90-20=70. 100-20=80. 40-20=20.
4,5(93 оценок)
Открыть все ответы
Ответ:
nastyayakushka2
nastyayakushka2
10.02.2023

Имеем многочлен P_{n}(x) = 12x^{5} - 23x^{4} - 27x^{3} - 36x^{2} - x + 3

Корнями многочлена P_{n}(x) называют корни уравнения

12x^{5} - 23x^{4} - 27x^{3} - 36x^{2} - x + 3 = 0

Имеем уравнение пятого порядка. Попробуем его решить с теоремы Безу.

Суть этой теоремы в том, что если уравнение вида с ненулевым свободным членом имеет некий корень , принадлежащий к множеству целых чисел, то этот корень будет делителем свободного члена.

Выпишем все делители свободного члена: \pm 1; \ \pm 3

Подставим x = 1 в корень уравнения и получим:

12 \cdot 1^{5} - 23 \cdot 1^{4} - 27 \cdot 1^{3} - 36 \cdot 1^{2} - 1 + 3 = 0

-72 = 0 — неправда

Подставим x = -1 в корень уравнения и получим:

12 \cdot (-1)^{5} - 23 \cdot (-1)^{4} - 27 \cdot (-1)^{3} - 36 \cdot (-1)^{2} - (-1) + 3 = 0

-40 = 0 — неправда

Подставим x = 3 в корень уравнения и получим:

12 \cdot 3^{5} - 23 \cdot 3^{4} - 27 \cdot 3^{3} - 36 \cdot 3^{2} - 3 + 3 = 0

0 = 0 — правда

Следовательно, x_{1} = 3 — один из корней уравнения. Теперь необходимо выполнить деление многочлена столбиком на (x - 3) (см. вложение).

После этого исходное уравнение можно записать разложив на множители:

(x - 3)(12x^{4} + 13x^{3} + 12x^{2} - 1) = 0

Решаем второе уравнение:

12x^{4} + 13x^{3} + 12x^{2} - 1 = 0

12x^{4} + 4x^{3} + 9x^{3} + 3x^{2} + 9x^{2} + 3x - 3x - 1 = 0

4x^{3}(3x + 1) + 3x^{2} (3x + 1) + 3x (3x + 1) - (3x + 1) = 0

(3x + 1)(4x^{3} + 3x^{2} + 3x - 1) = 0

(3x + 1)(4x^{3} - x^{2} + 4x^{2} - x + 4x - 1) = 0

(3x + 1)(x^{2}(4x - 1) + x(4x - 1) + (4x - 1)) = 0

(3x + 1)(4x - 1)(x^{2} + x + 1) = 0

\left[\begin{array}{ccc}3x + 1 = 0 \ \ \ \ \ \\4x - 1 = 0 \ \ \ \ \ \\x^{2} + x + 1 = 0\end{array}\right

\left[\begin{array}{ccc}x = -\dfrac{1}{3} \\x = \dfrac{1}{4} \ \ \\ x \notin \mathbb{R} \ \ \end{array}\right

Рациональные корни: -\dfrac{1}{3} ; \ \dfrac{1}{4}


надо. Найти рациональные корни многочлена f = 12x^5 - 23x^4 - 27x^3 - 36x^2 - x + 3
4,6(2 оценок)
Ответ:
Maci189
Maci189
10.02.2023

Имеем многочлен P_{n}(x) = 12x^{5} - 23x^{4} - 27x^{3} - 36x^{2} - x + 3

Корнями многочлена P_{n}(x) называют корни уравнения

12x^{5} - 23x^{4} - 27x^{3} - 36x^{2} - x + 3 = 0

Имеем уравнение пятого порядка. Попробуем его решить с теоремы Безу.

Суть этой теоремы в том, что если уравнение вида с ненулевым свободным членом имеет некий корень , принадлежащий к множеству целых чисел, то этот корень будет делителем свободного члена.

Выпишем все делители свободного члена: \pm 1; \ \pm 3

Подставим x = 1 в корень уравнения и получим:

12 \cdot 1^{5} - 23 \cdot 1^{4} - 27 \cdot 1^{3} - 36 \cdot 1^{2} - 1 + 3 = 0

-72 = 0 — неправда

Подставим x = -1 в корень уравнения и получим:

12 \cdot (-1)^{5} - 23 \cdot (-1)^{4} - 27 \cdot (-1)^{3} - 36 \cdot (-1)^{2} - (-1) + 3 = 0

-40 = 0 — неправда

Подставим x = 3 в корень уравнения и получим:

12 \cdot 3^{5} - 23 \cdot 3^{4} - 27 \cdot 3^{3} - 36 \cdot 3^{2} - 3 + 3 = 0

0 = 0 — правда

Следовательно, x_{1} = 3 — один из корней уравнения. Теперь необходимо выполнить деление многочлена столбиком на (x - 3) (см. вложение).

После этого исходное уравнение можно записать разложив на множители:

(x - 3)(12x^{4} + 13x^{3} + 12x^{2} - 1) = 0

Решаем второе уравнение:

12x^{4} + 13x^{3} + 12x^{2} - 1 = 0

12x^{4} + 4x^{3} + 9x^{3} + 3x^{2} + 9x^{2} + 3x - 3x - 1 = 0

4x^{3}(3x + 1) + 3x^{2} (3x + 1) + 3x (3x + 1) - (3x + 1) = 0

(3x + 1)(4x^{3} + 3x^{2} + 3x - 1) = 0

(3x + 1)(4x^{3} - x^{2} + 4x^{2} - x + 4x - 1) = 0

(3x + 1)(x^{2}(4x - 1) + x(4x - 1) + (4x - 1)) = 0

(3x + 1)(4x - 1)(x^{2} + x + 1) = 0

\left[\begin{array}{ccc}3x + 1 = 0 \ \ \ \ \ \\4x - 1 = 0 \ \ \ \ \ \\x^{2} + x + 1 = 0\end{array}\right

\left[\begin{array}{ccc}x = -\dfrac{1}{3} \\x = \dfrac{1}{4} \ \ \\ x \notin \mathbb{R} \ \ \end{array}\right

Рациональные корни: -\dfrac{1}{3} ; \ \dfrac{1}{4}


надо. Найти рациональные корни многочлена f = 12x^5 - 23x^4 - 27x^3 - 36x^2 - x + 3
4,5(93 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ