Чтобы определить наибольшую степень числа 10, на которую делится число n!=1*2*3...n, надо сначала найти наибольшую степень числа 5, на которую оно делится. Каждое пятое число 5, 10, 15, 20, 25, 30 и т. д. делится на 5, всего таких чисел, не превосходящих числп n, Цел [n/5] (Целое, ближайшее к n/5). Однако некоторые мз них делятся на вторую степень числа 5, а именно 25, 50, 75 100 и т. д. ; таких чисел существует Цел [n/25]. Некоторые из них делятся на третью степень числа 5, т. е на 125: 125, 250, 375 и т. д. ; их существует Цел [n/125] и т. д. Это показывает, что число делителей числа n! на степени 5 таково: Цел [n/5]+Цел [n/25]+Цел [n/125]+...(1) В этой сумме достаточно выписать лишь те члены, в которых целое частное не равно нулю (числитель не меньше знаменателя) . Точно такие же рассуждения можно провести для степеней 2. Количество делителей n! на степени 2: Цел [n/2]+Цел [n/4]+Цел [n/8]+... Ясно что это выражение не меньше выражения (1), т. е. в числе n! каждому множителю 5 можно подобрать множитель 2. Таким образом, выражение (1) дает величину степени числа 10, делящей n!, которая равна числу нулей, стоящих в конечной части записи числа. Для n=100. Цел [100/5]=20, Цел [100/25]=4, Цел [100/125]=0, поэтому 100! заканчивается 24 нулями.
Задача. Дан отрезок АВ. С циркуля и линейки разделите его на три равные части.
Построение. 1) проведем отрезок АВ;
2) из точки А проведем окружность произвольного радиуса, которая пересекает отрезок АВ в точке Д, а его продолжение за точку А - в точке С;
3) из точек С и Д проводим окружности радиусом большим СД, пересекающиеся в точках М и N, через полученные точки проводим прямую МN, которая перпендикулярна прямой АВ;
4) возьмем произвольную точку Р прямой МN и проведем через нее прямую РК, перпендикулярную прямой МN; прямые АВ и РК будут параллельны;
5) от начала Р луча РМ отложим три равных отрезка РР1, Р1Р2, Р2Р3, каждый из которых меньше отрезка АВ;
6) через точки Р3 и В проведем прямую, которая пересечет прямую МN в точке Q;
7) проводим прямые Р2Q и Р1Q, которые и разделят отрезок АВ на три равные части, АА1 = А1А2 = А2В. Нетрудно доказать, используя подобие треугольников, что построенные части отрезка АВ действительно равны.
х + 18 300 = 20 000
х = 20 000 - 18 300
х = 1 700
18 000 + 1 700 + 300 = 20 000
19 700 + 300 = 20 000
20 000 = 20 000