М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Камишок7
Камишок7
20.02.2021 01:27 •  Математика

Решить . 20 .: оля, костя, нина, таня, и галя должны по очереди дежурить в классе, и им нужно составить расписание. оля вызвалась дежурить первой, а галя сказала,что будет последней. сколько вариантов расписания при этих условиях они могут составить?

👇
Ответ:
yuriygabr
yuriygabr
20.02.2021
Оля Костя Нина Таня Галя
Оля Костя Таня Нина Галя
Оля Нина Костя Таня Галя
Оля Нина Таня Костя Галя
Оля Таня Костя Нина Галя
Оля Таня Нина Костя Галя
 6 вариантов расписания
4,6(53 оценок)
Открыть все ответы
Ответ:
hitecheldo155
hitecheldo155
20.02.2021
ответ: 13 чисел.
4000, 3100, 3010, 1300, 1030, 2200, 2020, 2002, 2110, 1210, 1120, 1102, 1012.

Решение:
Если сумма цифр равна 4, значит, в числе могут быть только цифры 0, 1, 2, 3, 4. Пусть 4 — наибольшая цифра, которая есть в искомом числе. Значит, она стоит на первом месте, а три остальные цифры равны нулю — получили число 4000. Если наибольшая цифра — 3, то возможны четыре варианта: 3100, 3010, 1300, 1030. Варианты 3001, 1003 невозможны, так как число с единицей на конце не является чётным. Пусть наибольшая цифра — 2, в этом случае получим числа 2110, 2200, 2020, 2002, 1210, 1120, 1102, 1012. Если наибольшая цифра — 1, то все цифры числа равны 1, но число 1111 нечётное, поэтому такой вариант невозможен. Наконец, числа 0000 не существует. Всего получается 1+4+8+0=13 чисел.
4,4(74 оценок)
Ответ:
dianavoronina4545
dianavoronina4545
20.02.2021
ответ: 13 чисел.
4000, 3100, 3010, 1300, 1030, 2200, 2020, 2002, 2110, 1210, 1120, 1102, 1012.

Решение:
Если сумма цифр равна 4, значит, в числе могут быть только цифры 0, 1, 2, 3, 4. Пусть 4 — наибольшая цифра, которая есть в искомом числе. Значит, она стоит на первом месте, а три остальные цифры равны нулю — получили число 4000. Если наибольшая цифра — 3, то возможны четыре варианта: 3100, 3010, 1300, 1030. Варианты 3001, 1003 невозможны, так как число с единицей на конце не является чётным. Пусть наибольшая цифра — 2, в этом случае получим числа 2110, 2200, 2020, 2002, 1210, 1120, 1102, 1012. Если наибольшая цифра — 1, то все цифры числа равны 1, но число 1111 нечётное, поэтому такой вариант невозможен. Наконец, числа 0000 не существует. Всего получается 1+4+8+0=13 чисел.
4,4(90 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ