Выясним, составляют ли площади квадратов бесконечно убывающую геометрическую прогрессию.
Если сторона наибольшего квадрата равна 56 см, то сторона вписанного в него квадрата равна 282√ см, следующая 28 см, ...
Если сторона квадрата равна a, то его диагональ равна a2√.
Сторона вписанного квадрата равна половине диагонали...
Площадь квадрата равна a2.
Площади квадратов образуют последовательность: 562; (28⋅2√)2; 282;...
или 3136; 1568; 784; ...
Проверим, является ли эта последовательность бесконечно убывающей геометрической прогрессией.
b2b1=15683136=0,5b3b2=7841568=0,50,5<1,q=0,5
Используем формулу суммы бесконечно убывающей геометрической прогрессии: S∞=b11−q=31361−0,5=31360,5=6272 см2
Сумма площадей всех квадратов равна 6272 см2
Пошаговое объяснение:
ответ:В отряде 7 офицеров и 20 рядовых. Сколькими можно сформировать разведывательную группу из 3 офицеров и 12 рядовых?
Пошаговое объяснение:
Трех офицеров из 10 можно выбрать С где С(10,3) - число сочетаний из 10 по 3.
С(10,3) = 10! / (3! · (10 - 3)!) = 10! / (3! · 7!) =
= 8 · 9 · 10 / (1 · 2 · 3) = 120;
Семь солдат из 20 можно выбрать С С(20,7) = 20! / (7! · (20 - 7)!) = 20! / (7! · 13!) =
= 14 · 15 · 16 · 17 · 18 · 19 · 20 / (1 · 2 · 3 · 4 · 5 · 6 · 7) = 77520;
Всего выбрать разведывательную группу:
С(10,3) · С(20,7) = 120 · 77520 = 9302400.
ответ: 9302400.
2.50*2=100(с.) в третьем
Всего 50+55+100= 205 серий