ответ: проверить является ли функция y=(cx-1)x решением дифференциального уравнения y'= x + 2y/x
решение:
проверку можно сделать подстановкой функции в дифференциальное уравнение первого порядка.
вначале найдем производную функции
y'=((cx-1)x)'=(cx-1)'x + (cx-1)x'= cx + cx - 1 =2cx - 1
заново запишем дифференциальное уравнение
y' = x + 2y/x
2сх - 1 = х + 2(сх -1)х/x
2сх - 1 = х + 2(сх - 1)
2cx - 1 = x + 2cx - 2
2cx - 1 = 2cx - 2 + x
видно что для любого значения константы с уравнение верно только для х =1. поэтому функция y=(cx-1)x не является решением дифференциального уравнения первого порядка y' = x + 2y/x
решением данного уравнения является функция y =x²(c + ln(x))
ответ: нет
если дифференциальное уравнение записано в виде y' = (x + 2y)/x
то при подстановке функции y=(cx-1)x в правую часть уравнения получим
(x + 2y)/x = (x + 2(cx-1)x)/x =1 + 2(cx-1) = 1 + 2cx - 2 = 2cx - 1.
получили верное равенство
y' = (x + 2y)/x
2сx - 1 = 2cx - 1
поэтому функция y=(cx-1)x является решением дифференциального уравнения y' = (x + 2y)/x.
подробнее - на -
пошаговое объяснение:
А 71,4 км В
> (х + 2) t - 1,7 ч (х - 2) км/ч <
Пусть х км/ч - собственная скорость лодки, тогда (х + 2) км/ч - скорость лодки по течению реки, (х - 2) км/ч - скорость лодки против течения реки; 71,4 : 1,7 = 714 : 17 = 42 км/ч - скорость сближения. Уравнение:
(х + 2) + (х - 2) = 42
2х = 42
х = 42 : 2
х = 21 (км/ч) - собственная скорость лодки
(21 + 2) · 1,7 = 23 · 1,7 = 39,1 (км) - пройдёт лодка по течению реки
(21 - 2) · 1,7 = 19 · 1,7 = 32,3 (км) - пройдёт лодка против течения
ответ: 21 км/ч; 39,1 км; 32,3 км.
перпендикулярные