М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
hewiky
hewiky
17.01.2020 10:27 •  Математика

Нужно нарисовать фигуру симметричной прямой !

👇
Ответ:
Polllina2209
Polllina2209
17.01.2020
Рисуй по линейки и щитай клетки
4,6(7 оценок)
Открыть все ответы
Ответ:
Gubatu
Gubatu
17.01.2020
У одноклассников Пети может быть 0, 1, 2, ..., 28 друзей – всего 29 вариантов. Но если кто-то дружит со всеми, то у всех не меньше одного друга. Поэтому либо есть такой, кто дружит со всеми, либо есть такой, кто не дружит ни с кем. В обоих случаях остается 28 вариантов: 1, 2, ..., 28 или 0, 1, ..., 27.
Обозначим того, у кого больше всего друзей через A, а того, у кого их меньше всего – через B. В первом случае A дружит со всеми, а B – только с одним человеком, то есть только с A. Во втором случае B не дружит ни с кем, а A дружит со всеми, кроме одного, то есть со всеми, кроме B.
Итак, в каждом из случаев A дружит с Петей, а B – нет. Переведём A и B в другой класс. Как мы уже видели, A дружит со всеми из оставшихся, а B – ни с кем из оставшихся. Поэтому после перевода у каждого стало на одного друга меньше (среди одноклассников). Значит, у оставшихся Петиных одноклассников снова будет разное число друзей среди одноклассников.
Теперь снова переведём самого "дружелюбного" и самого "нелюдимого" в другой класс и т. д.
Повторяя эти рассуждения 14 раз, мы переведём в другой класс 14 пар школьников, в каждой из которых ровно один Петин друг. Итак, друзей у Пети 14
ответ:14
4,6(98 оценок)
Ответ:
Ildessova
Ildessova
17.01.2020
Эта задача связана с так званым парадоксом "Дней рождений". Парадокс заключается в том что если в групе 22 человек то вероятность что у двоих будет одинаковый день рождение составляет приблизительно 50 %. В данной задаче всего 60 человек, то вероятность что у двоих  из них одинаковые дни рождения составляет более 99%. Убедиться , что вероятность такая высокая можна посчитать ее. Для этого нужно найти сначала вероятность того, что у всех человек групы дни рождение разные.Сначала возьмем одного человека из групы, потом второго, вероятность того, что день рождение второго человека не совпадет из днем первого составляет -  1- \frac{1}{365}, далее возьмемь третього человека, вероятность того, что его день рождение не совпадеть из первыми двумя равна - 1- \frac{2}{365}, идем по аналогии и находим вероятности для следующих  человек в групе. Общая формула нахождение вероятности будет выглядеть так
p(n)= \frac{365!}{365^{n}(365-n)!} =\frac{365!}{365^{60}(365-60)!}=\frac{365!}{365^{60}305!} ;
где n - количество человек в групе, 365 - это число дней в году(без високосного года).
Вероятность того, что одна пара будет иметь одинаковый день рождение
становит p_{1} =1-p(n); Тепер все посчитаем.
p(n)=\frac{365!}{365^{60}305!} = \frac{306*307*...*365}{365^{60}} = \frac{3.211830504503101*10^{151}}{5.4647697383439176*10^{153}} =0.00587733

 p_{1} =1-0.00587733=0.99412267
Приблизительно вероятность того, что одна пара будет иметь одинаковый день рождение становит  99.41 %.
ответ: вероятность 99.41 %.
(вероятность такая высокая так как рассматривается количество возможных пар а не человек в группе)
4,6(57 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ