36 легковых машин
Пошаговое объяснение:
240 машин - 100%, или же все машины в автопарке;
x грузовых = 60% из всех;
y легковых - 25% из грузовых.
Сперва найдём кол-во грузовых машин x с пропорции:
240 - 100%
х - 60%
х = (240 * 60) / 100 = 144 (грузовых машин).
Теперь, зная кол-во грузовиков, можем найти кол-во легковых машин, так как их кол-во связанно с кол-вом грузовых. Примем все грузовые как 100%. Опять же по пропорции:
144 грузовых - 100%, или же все грузовые;
у легковых - 25% из грузовых;
у = (144 * 25) / 100 = 36 (легковых машин).
ответ:
во вложении - график функции.
синим цветом показана одна из линий при m=2.25. вторая линия совпадает с осью абсцисс (m=0).
исходная функция y={x}^{2}+3\,x-4\, \left| x+2 \right| +2y=x
2
+3x−4∣x+2∣+2 содержит функцию абсолютной величины, поэтому её надо рассматривать отдельно на участках, где выражение под знаком абсолютной величины отрицательно и положительно, т.е. на интервалах (-∞; -2] и [-2; +∞]
на первом интервале |x+2|≤0 и функция примет следующий вид:
y=x²+3x+4(x+2)+2 ⇒ y=x²+7x+10. график функции - квадратная парабола с ветвями, направленными вверх (коэффициент при х² положительный). чтобы определить точки пересечения с осью абсцисс составим уравнение
x²+7x+10=0 ⇒ x1=-5; x2=-2 - это и будут точки пересечения графика функции с осью абсцисс.
на втором интервале |x+2|≥0 и функция примет следующий вид:
y=x²+3x-4(x+2)+2 ⇒ y=x²-x-6. график функции - квадратная парабола с ветвями, направленными вверх (коэффициент при х² положительный). чтобы определить точки пересечения с осью абсцисс составим уравнение
x²-x-6=0 ⇒ x3=-2; x4=3 - это и будут точки пересечения графика функции с осью абсцисс.
корни х2 и х3 совпали, это значит, что всего имеется три точки пересечения графиков с осью обсцисс в точках х1=-5б х2=-2б х3=3. это и будет первая из искомых прямых, т.е. m1=0.
построив и рассмотрев график функции, можно определить, что вторая прямая, параллельная оси абсцисс и имеющая с графиком функции ровно три общие точки - это прямая, проходящая через минимум первой из рассмотренных функций (показана на графике синим цветом). для нахождения точки экстремума функции y=x²+7x+10 достаточно её производную приравнять нулю. y'=2x+7; 2x+7=0 ⇒ x=-3.5
подставляя найденное значение x в выражение функции получим y=(-3.5)²-7*3.5+10=
-2.25, т.е. m2=-2.25.
а*3=150
а=150:3
а=50