делаем рисунок. Проведем диагонали ВD и АС ромба. Соединим середины сторон a,b,c,d попарно. Получившийся четырехугольник - прямоугольник, т.к. его стороны, являясь средними линиями треугольников, на которые делит ромб каждая диагональ - параллельны диагоналям ромба - основаниям этих треугольников.А диагонали ромба пересекаются под прямым углом,и поэтому углы четырехугольника также прямые. Сумма углов параллелограмма ( а ромб - параллелограмм), прилегающих к одной стороне, равна 180° Так как тупой угол ромба равен 120°, острый равен 60° Пусть меньшая диагональ d, большая -D Диагональ d равна стороне ромба, так как образует с двумя сторонами ромба равносторонний треугольник ABD с равными углами 60° . Большая диагональ D в два раза длиннее высоты АО равностороннего треугольника AB. АО равна стороне ромба АВ, умноженной на синус угла 60° АО=4v3:2=2v3 D=АС=4v3 Стороны прямоугольника ( на рисунке красного цвета) равны: ширина ab равна половине BD и равна 2 см длина bc равна половине АС и равна 2v3 см S abcd=2*2v3=4v3
+15 ⇔ ( -15)
0 ⇔ 0
(-12) ⇔ 12
2 ⇔ (- 2 )
2)
| +13 | =13
|- 60 | = 60
|0|=0
3)
- (+20) = -20
- (-20) = 20
+ (-22) = -22