Теорема (свойство медианы равнобедренного треугольника). В равнобедренном треугольнике медиана, проведённая к основанию, является биссектрисой и высотой.
Доказательство. Пусть ABC – данный равнобедренный треугольник с основанием AB и CD – медиана, проведённая к основанию (рис. 53).
Треугольники CAD и CBD равны по первому признаку равенства треугольников. (У них стороны AC и BC равны, потому что треугольник ABC равнобедренный. Углы CAD и CBD равны как углы при основании равнобедренного треугольника. Сторона AD и BD равны, потому что D – середина отрезка AB.)
Из равенства треугольников следует равенство углов: угол ACD = углу BCD, угол ADC = углу BDC. Так как углы ACD и BCD равны, то CD – биссектриса. Так как углы ADC и BDC смежные и равны, то они прямые, поэтому CD – высота треугольника.
12÷2≈6(кг)_поровну 2 раза
6÷2≈3(кг)_поровну 3 раза
6+3≈9(кг)