№1
самое маленькое натуральное число 1
Является ли число 0 натуральным? Нет, не является
Существует ли самое большое натуральное число? Нет, не существует
Как это можно доказать? Натуральные числа применяются при счете предметов, предметов может быть бесконечно много
Какое самое большое натуральное число ты можешь назвать? 999 миллиардов 999миллионов 999тысяч 999
Сколько <<значным>> является ето число? 12-значное
№2
Запиши самое маленькое и самое большое из натуральных чисел. 1 и не существует
Сколько всего существует пятизначных натуральных чисел? Как это число можно вычислить?
первое 10000, последнее 99999
(99999-10000)+1=90000
№3
Запиши все возможные числа с перестановки цифр в записи числа123. 123 132 213 231 312 321
Сколько таких чисел у тебя получилось? 6
Какое их этих чисел будет самым большим? 321
Каких чисел среди них больше: чётных или нечётных? нечетных
№4
Найди натуральное число, которое делится нацело на 2, 3 и 5. 2*3*5=30
№5
Найди натуральное число, которое при делении на 2, 3 и 5 даёт в остатке число 1. (2*3*5)+1=31
ответ:12
Пошаговое объяснение:
Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см \times 1 см (см. рис.). В ответе запишите S/{pi}.
Сначала найдем радиус круга. Считаем клеточки, и получаем, что радиус равен 4.
Тогда площадь круга равна {pi}r^2=4^2{pi}=16{pi}
Заштрихованная фигура - это половина круга, и ее площадь равна S/2=8{pi}
В ответе записываем S/{pi}.
ответ: 8
2. Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см \times 1 см (см. рис.). В ответе запишите S/{pi}.
Сначала найдем радиус круга. Считаем клеточки, и получаем, что радиус равен 3.
Тогда площадь круга равна {pi}r^2=3^2{pi}=9{pi}
Найдем, какую часть заштрихованная фигура составляет от круга.
Мы видим, что заштрихованная фигура - это половина круга и еще одна четверть от половины, то есть одна восьмая.
1/2+1/8=5/8
Таким образом, площадь заштрихованной фигуры составляет 5/8 от площади круга.
S={5/8}*9{pi}=5,625{pi}
В ответе записываем S/{pi}.
ответ: 5,625
3. Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см \times 1 см (см. рис.). В ответе запишите S/{pi}.
Сначала найдем радиус круга. Считаем клеточки, и получаем, что радиус равен 4.
Тогда площадь круга равна {pi}r^2=4^2{pi}=16{pi}
Найдем, какую часть круга составляет незакрашенный сектор. Если мы незакрашенный центральный угол повернем на угол alpha, то увидим, что его величина равна 90^{circ}:
Сектор 90^{circ} - это 1/4 часть круга. Следовательно, закрашенный сектор - это 3/4 круга. И его площадь равна S={3/4}*16{pi}=12{pi}
В ответе записываем S/{pi}.
ответ: 12
30÷5=6 часов в пути первый
15÷3=5 ч второй в пути
6-5=1 час на один час вышел раньше