Пусть функция определена на множестве E Пусть где . Понятно, что для любого на области от (то есть: ) выполняется . Следовательно, для , выполняется .
Получили, что для любого есть , на области которой выполняется (Проще говоря: ). Следовательно - . Что и требовалось доказать. Для нужно отдельно доказать предел .
Теперь в чём проблема самого вопроса: мы только что доказали непрерывность функции на любом подмножестве . Но! Множество натуральных чисел тоже подмножество , значит тоже непрерывна, получается - доказали что непрерывна на области определения? Известно, что тоже непрерывна на области определения, но , понятное дело, не определена на ! Потому вопрос, ИМХО, поставлен не верно (претензия не к тебе, а скорее к преподавателям твоим). Правильно задать вопрос указывая то множесто точек, которое интересует: к примеру "непрерывна на " или, "непрерывна на отрезке "... Тем более, что есть понятие "равномерная непрерывность" - свойство области, а не так, как "непрерывность" - свойство точки. Отсюда и непонимание. А то получается: спрашивают об области, а проверяют точку. Будут вопросы - пиши.
P.S. Исправил ошибки в наборе символов. Текста много :)
28*25=700 ; 25*29=725 видим что если-бы наклеек было 728 то их бы хватило на 26 страниц по 28 (28*26=728), согласно условию лишних больше чем 1 наклейка, а для страницы не хватает 728-725=3 наклейки, следовательно всех наклеек 725+2=727 штук, но 727 число нечётное что противоречит условию о одинаковых количествах у двух человек, тогда преположим что условие что в ОБОИХ случаях останется НЕСКОЛЬКО наклеек ошибочно, тогда 725+1=726 наклеек, теперь надо найти число на которое 726 разделится без остатка и результат будет наибольшим но меньше чем 40, делители числа 726 это 1,2, 3, 6, 11, 22, 33, 66, 121, 242, 363, 726, если разделим 726/22=33 страницы и это ответ
белка -3х
лиса - х/4
х+3х+х/4=136
4х+х/4=136
16х/4+х/4=136
17х/4=136
17х=544
х=32 ежик
3*32=96 белка
32:4=8 лиса