М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vddrobysheva
vddrobysheva
02.03.2023 12:26 •  Математика

Решите катер плыл со скоростью 66 км.2 ч он плыл со v(скоростью)-18 км/ч,а остальной путь он проплыл со скоростью 15 км/ч.сколько всего t(времени) находится катер в пути

👇
Ответ:
tupitsa3
tupitsa3
02.03.2023
Я подозреваю что 66 это общее расстояние, если да то вот так:
2ч*18км/ч=36 км
66км-36км=30км
30 км : 15 км/ч =2 часа
2 ч + 2 ч = 4 часа всего
4,6(9 оценок)
Ответ:
semenovdima75
semenovdima75
02.03.2023
2×18= 36 к
66-36=30 км
30÷15=2 ч
2+2=4 ч
4,5(56 оценок)
Открыть все ответы
Ответ:
anyakoi
anyakoi
02.03.2023
Задание 1.
Все такие числа получаются записью цифр 1, 2, 3 и 4 в некотором порядке (каждая из данных цифр встречается в каждом из этих чисел ровно 1 раз).
На последнем месте могут стоять цифры 2 или 4 (так как числа четные).
Рассмотрим оба этих случая:
Зафиксируем на последнем месте цифру 2. Тогда первые 3 - некоторая перестановка из 1, 3, 4 (любая перестановка).
Всего перестановок из 3 элементов 3! = 1 * 2 * 3 = 6.
Значит если последняя цифра 2, то таких чисел 6 (это числа 1342, 1432, 3142, 3412, 4132, 4312).

Аналогично в случае, когда на последнем месте цифра 4.
Первые 3 цифры - перестановка из 1, 2, 3. Всего таких чисел 6 и это числа 1234, 1324, 2134, 2314, 3124, 3214.

Суммарно 12 чисел.

ответ: 12 чисел: 1342, 1432, 3142, 3412, 4132, 4312, 1234, 1324, 2134, 2314, 3124, 3214.

Задание 2.
Последняя цифра - 1 или 3.
Рассмотрим оба варианта.

Пусть на последней позиции стоит цифра 1. Тогда оставшиеся две цифры - какие-то из 2, 3, 4. Порядок расстановки этих чисел нам важен.
Всего возможных вариантов:
A_3^2={3!\over(3-2)!}={1*2*3\over1}=6
Это числа 231, 321, 241, 421, 341, 431.

Если последняя цифра 3, то действия аналогичные. Две оставшихся цифры выбираем из 1, 2, 4. Всего возможных вариантов выбора (с учетом порядка) 6.
Это числа 123, 213, 143, 413, 243, 423

Всего 12 возможных чисел.

ответ: 12 чисел: 231, 321, 241, 421, 341, 431, 123, 213, 143, 413, 243, 423
4,6(10 оценок)
Ответ:
litovka
litovka
02.03.2023
Задание 1.
Все такие числа получаются записью цифр 1, 2, 3 и 4 в некотором порядке (каждая из данных цифр встречается в каждом из этих чисел ровно 1 раз).
На последнем месте могут стоять цифры 2 или 4 (так как числа четные).
Рассмотрим оба этих случая:
Зафиксируем на последнем месте цифру 2. Тогда первые 3 - некоторая перестановка из 1, 3, 4 (любая перестановка).
Всего перестановок из 3 элементов 3! = 1 * 2 * 3 = 6.
Значит если последняя цифра 2, то таких чисел 6 (это числа 1342, 1432, 3142, 3412, 4132, 4312).

Аналогично в случае, когда на последнем месте цифра 4.
Первые 3 цифры - перестановка из 1, 2, 3. Всего таких чисел 6 и это числа 1234, 1324, 2134, 2314, 3124, 3214.

Суммарно 12 чисел.

ответ: 12 чисел: 1342, 1432, 3142, 3412, 4132, 4312, 1234, 1324, 2134, 2314, 3124, 3214.

Задание 2.
Последняя цифра - 1 или 3.
Рассмотрим оба варианта.

Пусть на последней позиции стоит цифра 1. Тогда оставшиеся две цифры - какие-то из 2, 3, 4. Порядок расстановки этих чисел нам важен.
Всего возможных вариантов:
A_3^2={3!\over(3-2)!}={1*2*3\over1}=6
Это числа 231, 321, 241, 421, 341, 431.

Если последняя цифра 3, то действия аналогичные. Две оставшихся цифры выбираем из 1, 2, 4. Всего возможных вариантов выбора (с учетом порядка) 6.
Это числа 123, 213, 143, 413, 243, 423

Всего 12 возможных чисел.

ответ: 12 чисел: 231, 321, 241, 421, 341, 431, 123, 213, 143, 413, 243, 423
4,5(28 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ