Рисунок прикреплен.
Дано: конус, ВС=12 см, ∠НСВ=30°
Найти: объем конуса
Решение: по условию образующая конуса наклонена к плоскости под углом в 30°. Это значит, что угол между образующей и радиусом основания конуса 30°.
Из вершины конуса опустим высоту. Обозначим её ВН.
ΔВНС прямоугольный.
У него известна гипотенуза ВС=12 и ∠НСВ=30°.
В прямоугольном треугольнике катет, лежащий напротив угла в 30° в два раза меньше гипотенузы.
По теореме Пифагора найдем второй катет ΔВНС. Он же является радиусом основания конуса.
Объем конуса вычисляется по формуле: , где R - радиус основания, h - высота конуса.
ответ: 216π см³
1) 30:5=6 (д.) - за 1 минуту.
1 час - 1 мин.
2) 60:4=15(м.) - четверть часа.
3) 6*15=90(д.) - за четверть часа.
пол часа - 30 мин.
4) 6*30=180(д.)
ответ : за четверть часа швея изготавливает 90 деталей; за пол часа швея изготавливает 180 деталей.