Площадь треугольника BOK равна KB*KO/2 (так как BKO прямой)
Угол OBK=альфа/2, так как BO биссектриса
Если обозначить точки касания на сторонах AB и AC через L и M соответственно и рассмотреть треугольники образованные точками касания, соседними вершинами треугольника и центром окружности, то окажется, что есть пары равных треугольников, из чего следует, что LB=KB, KC=MC, MA=LA. Подставляя эти равенства в LA+LB+KB+KC+MC+MA=2p, получаем 2MC+2MA+2KB=2p, откуда MC+MA+KB=p. С другой стороны, MC+MA=AC=a, поэтому KB=p-a
Тогда из треугольника OBK OB=KB*tg(альфа/2)=(p-a)*tg(альфа/2)
Подставляя в формулу для площади получим
S=((p-a)^2*tg(альфа/2))/2
2 - (13/33 - 5/22) = 2 - 11/66 = 2 - 1/6 = 5/6
6 3/16 - (2 3/8 + 3 5/12) = 99/16 -(19/8 + 41/12) =99/16 - (-25/24) = 99/16 + 25/24 = 247/48 = 5 7/48