Проиллюстрируйте с кругов Эйлера высказывание: «Все
учащиеся 5 класса присутствовали на школьной спартакиаде».
Решение: Выделим множества, о которых идет речь в высказывании:
это множество учащихся некоторой школы
(обозначим его за А), и множество учащихся 5 класса
(обозначим его В). В данном высказывании утверждается,
что все элементы множества В являются также и
элементами множества А. По определению отношения включения
это означает, что В А. Поэтому множество В надо изобразить внутри круга,
изображающего множество А.
2. Задайте множество другим если это возможно):
а) А = {х| xN, х ≤ 9}; б) А = {-4, -3, -2, -1, 0, 1, 2, 3, 4};
в) А = {х| xR, х
2
– 3 = 0}.
Решение: а) Элементами множества А являются натуральные числа,
которые меньше 9 и само число 9, значит, А = {1, 2, 3, 4, 5, 6, 7, 8, 9};
б) А = {х| xZ, |x| ≤ 4} – множество целых чисел, модуль которых не
больше четырех;
в) Элементами множества А являются корни уравнения х
2
– 3 = 0,
значит, А = {- 3 , 3 }.
3. Изобразите на координатной прямой перечисленные множества:
а) А = {х| xR, -1,5 ≤ х ≤ 6,7}; б) М = {х| xN, 4х - 14 < 0};
в) С = {х| xZ, -5 < х <2}; г) Н = {х| xZ, |x| < 7}.
Решение: ответы показаны на рисунке:
а) А = [-1,5; 6,7]
б) М = {1, 2, 3}
в) С = (-5; 2)
г) Н = {-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6}
4. Задайте числовое множество описанием характеристического
свойства элементов: а) (0; 11); б) [-12,3; 1,1); в) [-5; 3]; г) (- ∞; -102,354].
а) А = {х| xR, 0 < х <11}; б) С = {х| xR, -12,3 ≤ х < 1,1};
в) А = {х| xR, -5 ≤ х ≤ 3}; г) Р = {х| xR, х ≤ -102,354}.
5. Даны множества:
а) К = {у| у = 1, если уN, то у + 1N}
4/7 - 3/10 = 40/70 - 21/70 = 19/70
19/100 - 1/10 = 19/100 - 10/100 = 9/100
3/5 - 11/25 = 15/25 - 11/25 = 4/25
7/20 - 7/30 = 21/60 - 14/30 = 7/30
5/12 - 2/9 = 15/36 - 8/36 = 7/36