ответ: 180.
Вот формула площади трапеции:
, где a и b - основания трапеции, а h - высота (S, разумеется, площадь).
Вот только одна проблема: мы не знаем высоты. Но чтобы ее узнать, можно отсечь от трапеции (например, справа) прямоугольный треугольник. Его гипотенуза (c)- это боковая сторона трапеции, которая равна 13. Нижний катет (b) будет равен . Почему - можно увидеть на рисунке ниже. Второй катет этого треугольника (а) - это и есть высота, которую можно найти по теореме Пифагора:
Теперь высоту мы знаем и можем найти площадь трапеции:
Задача решена!
А (6) Б (12)
10/12 = 5/6 15/36 = 5/12
0,5 = 5/10 = 1/2 = 3/6 23/69 = 1/3 = 4/12
8/16 = 1/2 = 3/6 13/78 = 1/6 = 2/12
2/3 = 4/6 29/58 = 1/2 = 6/12
7 = 42/6 3/4 = 9/12
15/18 = 5/6 14/24 = 7/12
7/21 = 1/3 = 2/6 49/84 = 7/12
75/90 = 5/6 3 = 36/12
1/2 = 3/6 0,5 = 5/10 = 1/2 = 6/12
3/18 = 1/6 45/54 = 5/6 = 10/12
35/42 = 5/6 11/33 = 1/3 =4/12
1 1/2 = 3/2 = 9/6 19/38 = 1/2 = 6/12
1/3 = 2/6 35/42 = 5/6 = 10/12
17/34 = 1/2 = 3/6 56/96 = 7/12
3 = 18/6 0,25 = 25/100 = 1/4 = 3/12
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
В (18) Г (36)
21/54 = 7/18 35/42 = 5/6 = 30/36
2/9 = 4/18 0,25 = 25/100 = 1/4 = 9/36
15/27 = 5/9 = 10/18 11/12 = 33/36
14/36 = 7/18 5/6 = 30/36
1/6 = 3/18 58/72 = 29/36
8/9 = 16/18 5/18 = 10/36
22/36 = 11/18 2/3 = 24/36
5/6 = 15/18 21/108 = 7/36
49/63 = 7/9 = 14/18 0,75 = 75/100 = 3/4 = 27/36
2 = 36/18 7/12 = 21/36
45/81 = 5/9 = 10/18 5/9 = 20/36
4/9 = 8/18 46/72 = 23/36
65/78 = 5/6 = 15/18 1 = 36/36
1,5 = 15/10 = 3/2 = 27/18 25/45 = 5/9 = 20/36
2/3 = 12/18 11/18 = 22/36
1) 1 2/3 + 2 1/6 = 5/3 + 13/6 = 10/6 + 13/6 = 23/6
2) 23/6 : 5/6 = 23/6 * 6/5 = 23/5 = 4 3/5
1 2/3 + 2 1/6 : 5/6 = 4 4/15
1) 2 1/6 : 5/6 = 13/6 * 6/5 = 13/5 = 2 3/5
2) 1 2/3 + 2 3/5 = 1 10/15 + 2 9/15 = 3 19/15 = 4 4/15
3 1/8 : 5/16 - 2 1/3 * 3 2/7 = 2 1/3
1) 3 1/8 : 5/16 = 25/8 * 16/5 = 5 * 2 = 10
2) 2 1/3 * 3 2/7 = 7/3 * 23/7 = 23/3 = 7 2/3
3) 10 - 7 2/3 = 9 3/3 - 7 2/3 = 2 1/3