Из пункта а и б одновременно навстречу к друг другу вышли 2 лодки расстояние 45 км ,встретились они через 1,30 ч .нужно найти собственную скорость лодки
Найти: v₁ = v₂ = ? Решение Так как лодки плывут навстречу, то суммарная скорость лодок является скоростью их сближения: v₁ + v₂ = S/t Тогда: v₁ + v₂ = 45/1,5 v₁ + v₂ = 30 Так как по условию скорости лодок равны: 2v₁ = 2v₂ = 30 v₁ = v₂ = 15 (км/ч) ответ: Скорость каждой лодки 15 км/ч
Разметим весь лист параллельными линиями с шагом 1 см в одном и другом перпендикулярных направлениях, начиная от края, так чтобы образовалось ровно 100 одинаковых квадратиков, каждый площадью в один квадратный сантиметр. Назовём их для удобства дальнейших рассуждений – «ячейками».
Тогда все складки, всех описываемых в условии загибаний, будут совпадать с этими линиями (толщину бумаги мы не учитываем, считая её, как бы, бесконечно тонкой).
Заметим, при этом, что при любом (!) загибании, та ячейка, которая находится в угловом квадратике (верхнем правом) – непременно снова перейдёт в новый угловой многослойный квадратик (верхний правый).
Будем согнутый лист на любой стадии называть «фигурой». Выделим у этой «фигуры» некоторые особые зоны (всего 4 зоны):
1) [один] «угловой квадратик» (о нём мы уже упоминали, верхний правый);
2) [2 штуки] «краевые полосы» – многослойные полосы, шириной в 1 см, образующиеся сверху и справа после нескольких загибании краёв фигуры («угловой квадратик» мы рассматриваем отдельно, а поэтому мы его НЕ включаем в «краевые полосы»)
3) [один] «однослойный остаток».
При каждом загибании фигуры, край, который заворачивают внутрь, прикладывается к листу, и толщина «краевой полосы» увеличивается на один слой листа, а так же заметно увеличивается толщина «угловых квадратиков», примыкающих к данной «краевой полосе». При этом важно понимать, что толщина никакой другой «краевой полосы» не увеличивается.
Когда после всех загибаний получилась «фигура» в виде конечного квадрата 6 на 6 см, часть тонкого однослойного листа, т.е. «однослойный остаток», осталась только в пределах квадрата 5 на 5 см, «огороженного» сверху и справа сантиметровой шириной «краевых полос» и «углового квадратика».
Ширина «краевых полос» всегда равна 1 сантиметру, а их длина в конечном положении будет равна 5 сантиметрам.
Поскольку 10-сантиметровая сторона исходного листа «ужалась» до стороны фигуры, размером в 6 см, то значит, в совокупности, с каждой стороны было загнуто по 4 сантиметра листа. А именно: 4 сантиметра справа и 4 сантиметра сверху. Значит в «краевых полосах» сосредоточено 4 дополнительных (!) слоя листа, а значит, всего в «краевых полосах» сосредоточено 5 слоёв листа.
Площадь «краевой полосы» равна пяти квадратным сантиметрам, и при этом их 2 штуки, и в каждой по 5 слоёв исходного листа, значит всего во всех краевых полосах сосредоточено 5*5*2 = 50 «ячеек».
Площадь «однослойного остатка», размером 5x5 см – равна 25 квадратным сантиметрам и содержит в себе 25 «ячеек».
Всего было 100 «ячеек». Из них 50 + 25 = 75 «ячеек» мы уже нашли. Остальные 25 «ячеек» сосредоточены в «угловом квадратике». А значит в «угловом квадратике» будет сосредоточено 25 слоёв исходного листа.
Если проткнуть шилом такой «угловой квадратик», а потом распаковать «фигуру» обратно в исходное состояние, то мы обнаружим на развёрнутом листе 25 дырок.
Для того чтобы снять все сомнения, просто проведём чистый, "незамутнённый логикой" эксперимент и убедимся в правильности приведённых рассуждений. Результаты эксперимента представлены на фотографиях. Первая – несогнутый квадратный лист 10x10 . Вторая – лист, согнутый до размеров 6x6. Третья – развёрнутый обратно лист с 25-тью дырками.
Скорость поезда вышедшего со станции Мойынты, 77,25 км/ч Скорость поезда вышедшего со станции Шу, на 3 целых 1/2 км/ч меньше, значит 77,25-3,5 = 73,75км/ч
Оба они за 1 ч пройдут расстояние равному 77,25+73,75=151 км
Отсюда вывод: за 3 ч они пройдут расстояние 151*3=453 км
расстояние между станциями Мойынты и Шу: 453 км
Берем за x - расстояние между двумя станциями в километрах тогда они оба расстояние равное x/3 км
Тогда уравнение будет выглядит следующим образом: (77, 25 + (77, 25-3,5))*3 = x Решаем уравнение: (77,25 + 73,75) * 3 = х 77,25 + 73, 75 = х/3 151 = х/3 х=151*3=453
S = 45 км
t = 1,5 ч
Найти:
v₁ = v₂ = ? Решение
Так как лодки плывут навстречу, то суммарная скорость
лодок является скоростью их сближения:
v₁ + v₂ = S/t
Тогда:
v₁ + v₂ = 45/1,5
v₁ + v₂ = 30
Так как по условию скорости лодок равны:
2v₁ = 2v₂ = 30
v₁ = v₂ = 15 (км/ч)
ответ: Скорость каждой лодки 15 км/ч