Обычные задачи на производительность.
1. Производительность первого: 1/15 в час
Второго: 1/х в час, вместе: 1/6 в час
1/15+1/х=1/6
2/30+1/х=5/30
1/х=3/30=1/10
х=10,
ответ: 1/10 в час, или он сделает всю работу за 10 часов
2. Матроскин: 1/11, Шарик: 1/9, вместе: 1/х
1/11+1/9=1/х
9/99+11/99=1/х
20/99=1/х
х=99/20=4.95,
ответ: они вместе сделают работу за 4.95 дней
3. По той же схеме, но одна труба работает в минус, т.к. сливает воду
1/7-1/8=1/х
8/56-7/56=1/х
1/56=1/х
х=56,
ответ: бассейн будет наполнен за 56 часов
Пошаговое объяснение:
log(2x-5)(x+1)=1/(log(x+1)(2x-5)
ОДЗ; 2x-5>0; x>2.5
x+1>0; x>-1
x+1≠1; x≠0
2x-5≠1; x≠3
Общее ОДЗ: x=(2.5;3)U(3;+∞)
теперь к неравенству, обозначу log(x+1)(2x-5)=t
t+1/t≤2
(t^2-2t+1)/t=(t-1)^2/t<=0
рассмотрим два случая
а)так как числитель положителен, то t<0
log(x+1)(2x-5)<0
т.к по одз x>2.5, основание логарифма >1
2x-5<(x+1)^0
2x-5<1
2x<6
x<3
2)когда числитель дроби равен 0, t-1=0;t=1
log(x+1)(2x-5)=t=1
2x-5=(x+1)^1
2x-5=x+1
x=6
Учитывая одз общий ответ x=(2.5;3)U{6}