Можно составить уравнение учтем следующее: х- это куры у- это утки z - это гуси составляем уравнение x+y+z=100 1*x это сумма которую потратим на кур 10*у это сумма потраченная на утку 50*z это сумма потраченная на гуся составляем уравнение 1*х+10*у+50*z=500 получается система уравнений х+у+z=100 1*x+10*y+50*z=500 из первого уравнения выразим х получится х=100-у-z получается такое уравнение, когда подставим второе (100-у-z)+10*e+50*z=500 открываем скобки -у-z+10*у+50*z=500-100 получаем 9*y+49*z=400 y=400-49z/9 y=351/9=39 y=39 уток А поскольку нам нужно купить количество птиц целое число, то чисто логически понимаем, что гуся сможем купить только одного Теперь подставим найденные значения в уравнение х=100-у-z то есть х=100-39-1=60 х=60 кур можно проверить вспомним второе уравнение 1*х+10*у+50*z=500 подставляем найденные значения 1*60+10*39+50*1=500 60+390+50=500 Получается на сумму 500 рублей мы сможем купить 60 кур, 39 уток и 1 гусь ответ: 60 кур, 39 уток и 1 гусь
Х и у стороны прямоугольника Из условия задачи известна что : 1) ( х + у) * 2 = 30 или х + у = 15 х = 15 - у ; также известно что : х * у = 36 . Подставим значение х из первого уравнения . Получим : (15 - у) * у = 36 15у - у^2 = 36 y^2 - 15y + 36 = 0 Найдем дискриминант уравнения D . D = (- 15)^2 - 4 * 1 * 36 = 225 - 144 = 81 . sqrt (D) = sqrt (81) = 9 Найдем квадратные корни уравнения : 1-ый = (-(-15) + 9) /2*1 = (15 + 9)/2 = 12 ; 2-ой - (-(-15) - 9) /2*1 = (15 - 9) /2 = 3 Одно из сторон прямоугольника равна : 12 см или 3 см а другая исходя из уравнения х = 15 - у будет равна : 3 см или 12 см