ответ: 8 пар.
Объяснение:

Раскрыв скобки, получаем:

Перенесем слагаемые с переменными влево, а свободный член — вправо:


Из обеих частей уравнения вычтем
:

Разложим левую часть на множители методом группировки:



К обеим частям уравнения прибавим выражение
:


Вынесем общий множитель
за скобки:

Вынесем
:


Так значения m и n целые (по нужному условию), значения выражений в скобках не могут быть дробными.
Произведение двух целых чисел равно
в восьми случаях:
1)
;
2)
;
3)
;
4)
;
5)
;
6)
;
7)
;
8)
.
Определим, какие будут значения m и n, если значения выражений в скобках равны множителям из каждого случая:
1) 
Получаем:



Значит, (m,n) = (0; -13).
Аналогично рассмотрим следующие случаи:
2) 
(m,n) = (-2; 5).
3) 
(m,n) = (-11; -13).
4) 
(m,n) = (9; 5).
5) 
(m,n) = (-3; -1).
6) 
(m,n) = (1; -7).
7) 
(m,n) = (4; -1).
8) 
(m,n) = (-6; -7).
Выходит, 8 пар целых чисел (m, n) удовлетворяют данное равенство.
1)398+674=1072
2)426*2=852
3)1649+1072=2721
4)2721-852=1869
ответ:1869